精英家教网 > 高中数学 > 题目详情

【题目】为了调查甲、乙两个网站受欢迎的程度随机选取了14统计上午8:00~10:00各自的点击量得到如图所示的茎叶图,根据茎叶图回答下列问题.

(1)甲、乙两个网站点击量的极差分别是多少?

(2)甲网站点击量在[10,40]间的频率是多少?

(3)甲、乙两网站哪个更受欢迎?并说明理由.

【答案】(1)65,66; (2)0.286; (3) 甲网站更受欢迎

【解析】

1)根据茎叶图,得到甲乙两网站的最大点击量和最小点击量,即可求解极差;

2)由茎叶图可知,在中,有,共4个数据,即可求解相应的概率;

3)由茎叶图,可知甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,即可作出判定.

1)由茎叶图可知,

甲网站最大点击量为73,最小的点击量为8,所以甲网站的点击量的极差为73–8=65

乙网站最大点击量为71,最小的点击量为5,所以乙网站的点击量的极差为71–5=66

2)由茎叶图可知,在中,有,共4个数据,

所以甲网站在内的概率为

3)由茎叶图,可知甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,可判定甲网站更受欢迎.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的极小值;

(2)若函数个零点,求实数的取值范围;

(3)在(2)的条件下,若函数的三个零点分别为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,D是 的中点,BD交AC于E. (Ⅰ)求证:DC2=DEDB;
(Ⅱ)若CD=2 ,O到AC的距离为1,求⊙O的半径r.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x||x﹣1|≤2,x∈Z},B={x|y=log2(x+1),x∈R},则A∩B=(
A.{﹣1,0,1,2,3}
B.{0,1,2,3}
C.{1,2,3}
D.{﹣1,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面ABCD是矩形,平面ABCD,,E,F是线段BC,AB的中点.

证明:

在线段PA上确定点G,使得平面PED,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(xn,yn),….

(1)若程序运行中输出的一个数组是(9,t),求t的值;

(2)程序结束时,共输出(x,y)的组数为多少;

(3)写出程序框图的程序语句.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A、B、C三位老师分别教数学、英语、体育、劳技、语文、阅读六门课,每位教两门.已知:

(1)体育老师和数学老师住在一起,

(2)A老师是三位老师中最年轻的,

(3)数学老师经常与C老师下象棋,

(4)英语老师比劳技老师年长,比B老师年轻,

(5)三位老师中最年长的老师比其他两位老师家离学校远.

问:A、B、C三位老师每人各教哪几门课?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中, 在平面的射影为棱的中点, 为棱的中点,过直线作一个平面与平面平行,且与交于点,已知, .

(1)证明: 为线段的中点

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均不相等的等差数列{an}的前四项和S4=14,且a1 , a3 , a7成等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{ }的前n项和,若Tn≤λan+1n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

同步练习册答案