【题目】按照《国务院关于印发“十三五”节能减排综合工作方案的通知》(国发[2016〕74号)的要求,到2020年,全国化学需氧量排放总量要控制在2001万吨以内,要比2015年下降10%假设“十三五”期间每一年化学需氧量排放总量下降的百分比都相等,2015年后第年的化学需氧量排放总量最大值为万吨.
(1)求的解析式;
(2)求2019年全国化学需氧量排放总量要控制在多少万吨以内(精确到1万吨).
科目:高中数学 来源: 题型:
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
质量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)现从抽取的6件合格产品中再任选3件,求恰好取到2件优等品的概率;
(Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:
|
| ||
75.3 | 24.6 | 18.3 | 101.4 |
(i)根据所给统计量,求关于的回归方程;
(ii)已知优等品的收益(单位:千元)与的关系,则当优等品的尺寸为为何值时,收益的预报值最大?(精确到0.1)
附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
分数段 | 理科人数 | 文科人数 |
正 | 正 | |
正 | ||
(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.
(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体中,、分别为、的中点,,,如图.
(1)若交平面于点,证明:、、三点共线;
(2)线段上是否存在点,使得平面平面,若存在确定的位置,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把物体放在冷空气中冷却,如果物体原来的温度是,空气的温度是,则1min后物体的温度可由公式求得,其中k是常数,把温度是的物体放在15℃的空气中冷却,1 min后,物体的温度是.
(1)求出k的值;
(2)计算开始冷却多久后,上述物体的温度分别是;
(3)判断上述物体最终能否冷却到12℃,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在等比数列{an}中,=2,,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com