精英家教网 > 高中数学 > 题目详情
椭圆ax2+by2=1与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB|=2
2
,OC
的斜率为
2
2
,求椭圆的方程.
设A(x1,y1),B(x2,y2),那么A、B的坐标是方程组
ax2+by2=1
x+y-1=0
的解.
即:a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0,
因为
y1-y2
x1-x2
=-1,
所以
y1+y2
x1+x2
=
a
b

2yc
2xc
=
a
b
yc
xc
=
a
b
=
2
2
,所以b=
2
a①
再由方程组消去y得(a+b)x2-2bx+b-1=0,
由|AB|=
(x1-x2)2+(y1-y2)2
=
2(x1-x2)2
=
2[(x1+x2)2-4x1x2]
=2
2

得(x1+x22-4x1x2=4,即(
2b
a+b
2-4•
b-1
a+b
=4.②
由①②解得a=
1
3
,b=
2
3

故所求的椭圆的方程为
x2
3
+
2
y2
3
=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设F1(-4,0)、F2(4,0)为定点,动点M满足|MF1|+|MF2|=8,则动点M的轨迹是(  )
A.椭圆B.直线C.圆D.线段

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面内已知两点A(0,2)、B(0,-2),若动点P满足|PA|+|PB|=4,则点P的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.线段

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆经过点(0,3),且长轴是短轴的3倍,则椭圆的标准方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆
x2
16
+
y2
m
=1
过点(2,3),椭圆上一点P到两焦点F1、F2的距离之差为2,
(1)求椭圆方程
(2)试判断△PF1F2的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知△ABC的两个顶点B(-3,0),C(3,0)且三边AC、BC、AB的长成等差数列,求点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(-3,2)离心率为
3
3
,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙的切线PA、PB切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q当弦PQ最大时,求直线PA的直线方程;
(3)求
OA
OB
的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知实数4,m,9构成一个等比数列,则圆锥曲线x2+
y2
m
=1
的离心率为(  )
A.
30
6
B.
7
C.
30
6
7
D.
5
6
或7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆)的左、右焦点分别是,过作倾斜角为的直线与椭圆的一个交点为,若垂直于轴,则椭圆的离心率为(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案