精英家教网 > 高中数学 > 题目详情
已知sinα+2cosα=0,则sin2α+cos2α=
 
分析:由sinα+2cosα=0可得角的正切值,这是解题的关键,用二倍角公式把sin2α+cos2α整理为单角的形式,加分母1,把1变为角的正弦和余弦的平方和,分子和分母同除余弦的平方,弦化切,代入求值.
解答:解:∵sinα+2cosα=0,
∴tanα=-2,
∵sin2α+cos2α=2sinαcosα+cos2α-sin2α
=
2sinαcosα+cos2-sin2α
sin2α+cos2α

=
2tanα+1-tan2α
tan2α+1

=-
7
5
点评:本节用到同角的三角函数之间的关系、二倍角公式和1的灵活运用,为了学生掌握这一知识,必须使学生熟练的掌握所有公式,在此基础上并能灵活的运用公式,培养他们的观察能力和分析能力,提高他们的解题方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在下列命题中:①已知两条不同直线m、n两上不同平面α,β,m⊥α,n⊥β,m⊥n,则α⊥β;②函数y=sin(2x-
π
6
)图象的一个对称中心为点(
π
3
,0);③若函数f(x)在R上满足f(x+1)=
1
f(x)
,则f(x)是周期为2的函数;④在△ABC中,若
OA
+
OB
=2
CO
,则S△ABC=S△BOC其中正确命题的序号为
 

查看答案和解析>>

同步练习册答案