精英家教网 > 高中数学 > 题目详情
已知f(α)=
sin(π-α)cos(2π-α)cos(-α+
3
2
π)
cos(
π
2
-α)sin(-π-α)

(1)化简f(α);
(2)若α为第三象限角,且cos(α-
3
2
π)=
1
5
,求f(α)的值;
(3)若α=-
31
3
π,求f(α)的值.
分析:(1)利用诱导公式对函数解析式化简整理,求得函数的解析式.
(2)利用诱导公式和已知条件求得sinα的值,进而利用同角三角函数的基本关系求得cosα的值,代入(1)中的函数解析式求得答案.
(3)利用函数的值和诱导公把函数解析式整理后利用特殊角的三角函数值求得问题的答案.
解答:解:(1)f(α)=
sinαcosα(-sinα)
sinα•sinα
=-cosα.
(2)∵cos(α-
3
2
π)=-sinα=
1
5
,∴sinα=-
1
5

又∵α为第三象限角,
∴cosα=-
1-sin2α
=-
2
6
5

∴f(α)=
2
6
5

(3)∵-
31
3
π=-6×2π+
5
3
π
∴f(-
31
3
π)=-cos(-
31
3
π)
=-cos(-6×2π+
5
3
π)
=-cos
5
3
π=-cos
π
3
=-
1
2
点评:本题主要考查了诱导公式的化简求值,同角三角函数的基本关系的应用.运用诱导公式时注意三角函数名称和正负号的变化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(a)=
sin(π-α)•cos(2π-α)•tan(
2
-α)
cot(-α-π)•sin(-π-α)

(1)化简f(a);
(2)若cos(a-
2
)=
1
5
,且a是第三象限角,求f(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
sinπx, -
13
6
≤x≤0
lgx      ,   x>0
,若函数g(x)=f(x)-k有三个不同的零点,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(3x+θ)-cos(3x+θ)是奇函数且在区间[0,
π
6
]
上是减函数,则θ的一个值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sinπx.
(1)设g(x)=
f(x),(x≥0)
g(x+1)+1,(x<0)
,求g(
1
4
)
g(-
1
3
)

(2)设h(x)=f2(x)+
3
f(x)cosπx+1
,求h(x)的最大值及此时x值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin
π
3
(x+1)-
3
cos
π
3
(x+1),则f(1)+f(2)+…+f(2014)=
 

查看答案和解析>>

同步练习册答案