精英家教网 > 高中数学 > 题目详情
18.已知空间四边形ABCD,链接AC,BD,则$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$为(  )
A.$\overrightarrow{AD}$B.$\overrightarrow{BD}$C.$\overrightarrow{AC}$D.$\overrightarrow{0}$

分析 根据向量的加减的几何意义即可求出.

解答 解:$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$=$\overrightarrow{AC}$+$\overrightarrow{CD}$=$\overrightarrow{AD}$,
故选:A.

点评 本题考查向量的加法运算,以及向量加法的三角形法则和平行四边形法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若sin(π-α)=-$\frac{{\sqrt{3}}}{3}$,且α∈(π,$\frac{3π}{2}$),则sin($\frac{π}{2}$+α)=(  )
A.-$\frac{\sqrt{6}}{3}$B.-$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,点C是以AB为直径的圆上一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE∥BC,DC⊥BC,DE=1,BC=2,AC=CD=3
(1)证明:EO∥平面ACD; 
(2)证明:平面ACD⊥平面BCDE;
(3)求三棱锥E-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个扇形OAB的面积为1平方厘米,它的周长为4厘米,则它的中心角是(  )
A.2弧度B.3弧度C.4弧度D.5弧度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\sqrt{2}$sinωx-$\sqrt{2}$cosωx(ω<0),若y=f(x+$\frac{π}{4}$)的图象与y=f(x-$\frac{π}{4}$)的图象重合,记ω的最大值为ω0,函数g(x)=cos(ω0x-$\frac{π}{3}$)的单调递增区间为(  )
A.[-$\frac{1}{3}$π+$\frac{kπ}{2}$,-$\frac{π}{12}$+$\frac{kπ}{2}$](k∈Z)B.[-$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{π}{6}$+$\frac{kπ}{2}$](k∈Z)
C.[-$\frac{1}{3}$π+2kπ,-$\frac{π}{12}$+2kπ](k∈Z)D.[-$\frac{π}{12}$+2kπ,-$\frac{π}{6}$+2kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,D为三角形所在平面内的一点,且$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$;则$\frac{{S}_{△BCD}}{{S}_{△ACD}}$=(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对函数f(x)=$\frac{cosx+m}{cosx+2}$,若?a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是(  )
A.($\frac{5}{4}$,6)B.($\frac{5}{3}$,6)C.($\frac{7}{5}$,5)D.($\frac{5}{4}$,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$函数g(x)=f(2-x)-$\frac{1}{4}$b,其中b∈R,若函数y=f(x)+g(x)恰有4个零点,则b的取值范围是(  )
A.(7,8)B.(8,+∞)C.(-7,0)D.(-∞,8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x3-x2+a,
 (1)求f(x)的极值;
(2)当a在什么范围内取值时,曲线与x轴仅有一个交点.

查看答案和解析>>

同步练习册答案