精英家教网 > 高中数学 > 题目详情

函数f(x) = ax2+4(a+1)x-3在[2,+∞]上递减,则a的取值范围是__              

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1+a•2x2x+b
是奇函数,并且函数f(x)的图象经过点(1,3),
(1)求实数a,b的值;
(2)求函数f(x)的值域;
(3)证明函数f(x)在(0,+∞)上单调递减,并写出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
xx-a
的反函数f-1(x)的图象的对称中心是(1,2),则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2+(a-3)x+lnx

(Ⅰ)若函数f(x)是定义域上的单调函数,求实数a的最小值;
(Ⅱ)方程f(x)=(
1
2
-a)x2+(a-2)x+2lnx
.有两个不同的实数解,求实数a的取值范围;
(Ⅲ)在函数f(x)的图象上是否存在不同两点A(x1,y1),B(x2,y2),线段AB的中点的横坐标为x0,有f′(x0)=
y1-y2
x1-x2
成立?若存在,请求出x0的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
ax+a-x2
,则图象关于
y轴
y轴
对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•普陀区一模)现有问题:“对任意x>0,不等式x-a+
1
x+a
>0恒成立,求实数a的取值范围.”有两位同学用数形结合的方法分别提出了自己的解题思路和答案:
学生甲:在一个坐标系内作出函数f(x)=
1
x+a
和g(x)=-x+a的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在g(x)的上方.可解得a的取值范围是[0,+∞]
学生乙:在坐标平面内作出函数f(x)=x+a+
1
x+a
的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在直线y=2a的上方.可解得a的取值范围是[0,1].
则以下对上述两位同学的解题方法和结论的判断都正确的是(  )

查看答案和解析>>

同步练习册答案