精英家教网 > 高中数学 > 题目详情
9.求适合下列条件的椭圆的标准方程:
(Ⅰ)a=$\sqrt{6}$,b=1,焦点在x轴上;
(Ⅱ)焦点在y轴上,焦距是4,且经过点M(-2$\sqrt{6}$,3).

分析 根据椭圆的类型,确定几何量,即可求出椭圆的标准方程.

解答 解:(Ⅰ)a=$\sqrt{6}$,b=1,焦点在x轴上,椭圆的标准方程:$\frac{{x}^{2}}{6}+{y}^{2}$=1…(5分)
(Ⅱ)设椭圆的标准方程:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$,
∵焦距是4,且经过点M(-2$\sqrt{6}$,3),
∴$\left\{\begin{array}{l}{{a}^{2}-{b}^{2}=4}\\{\frac{9}{{a}^{2}}+\frac{24}{{b}^{2}}=1}\end{array}\right.$,
∴a=6,b=4$\sqrt{2}$,
∴椭圆的标准方程$\frac{{y}^{2}}{36}+\frac{{x}^{2}}{32}=1$…(10分)

点评 本题考查椭圆的标准方程,考查学生的计算能力,根据椭圆的类型,确定几何量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0)(x1≠x2),都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0.则下列结论正确的是(  )
A.f(0.32)<f(20.3)<f(log25)B.f(log25)<f(20.3)<f(0.32
C.f(log25)<f(0.32)<f(20.3D.f(0.32)<f(log25)<f(20.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等比数列{an}中,若S6=9,前3项和S3=8,则数列{an}的公比为(  )
A.2B.$\frac{1}{2}$C.1或$\frac{1}{2}$D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=-x2+3x+4的定义域为[-2,2],则f(x)的值域为[-6,$\frac{25}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x、y满足以下约束条件$\left\{\begin{array}{l}{x+y≥5}\\{x-y+5≤0}\\{x≤3}\end{array}\right.$,若z=x+ay(a>0)取得最小值为$\frac{5}{2}$,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin(ωx+φ)(ω>0,π<φ<$\frac{3π}{2}$)的部分图象如图所示.
(1)求函数f(x)的表达式;   
(2)求函数f(x)在[$\frac{3π}{2}$,2π]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知非零向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a$•$\overrightarrow b$=0,且|$\overrightarrow a$-$\overrightarrow b$|=2|$\overrightarrow a$|,则向量$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-a|.当a=-2时,解不等式f(x)≥16-|2x-1|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知一次函数f(x)满足f(1)=2,f(2)=3.
(1)求函数f(x)的解析式;
(2)判断函数g(x)=-1+lg[f(x)]2在区间[0,9]上的零点的个数.

查看答案和解析>>

同步练习册答案