精英家教网 > 高中数学 > 题目详情

【题目】定义数列,如果存在常数,使对任意正整数,总有,那么我们称数列为“—摆动数列”.

)设 ,判断数列 是否为“—摆动数列”,并说明理由;

2已知—摆动数列”满足: 求常数的值.

【答案】(1)不是 是;(2).

【解析】试题分析:1假设数列摆动数列,由定义知存在常数,总有对任意成立,通过给取值说明常数不存在即可,对于数列,通过观察取,然后按照定义论证即可;(2根据数列摆动数列可推出,由此可推出,同理可推出,从而不等式可证.

试题解析:)假设数列摆动数列,即存在常数,总有对任意成立,取时,则,取时,则,显然常数不存在,

所以数列不是摆动数列

由于,所以对任意成立,其中

所以数列摆动数列”.

)由于 ,数列摆动数列

所以存在常数满足,使得对任意正整数,总有成立,

且有成立,则成立,

所以

所以

,解得

又由,解得

综上可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在递增等差数列{an}中,a1=2,a3是a1和a9的等比中项. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn= ,Sn为数列{bn}的前n项和,是否存在实数m,使得Sn<m对于任意的n∈N+恒成立?若存在,请求实数m的取值范围,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,,第五组,下图是按上述分组方法得到的频率分布直方图

(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;

(2)请估计学校1800名学生中,成绩属于第四组的人数;

(3)请根据频率分布直方图,求样本数据的众数和中位数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是平行四边形,点 分别为线段 的中点.

)证明平面

)证明平面平面

)在线段上找一点,使得平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,且
(1)确定∠C的大小;
(2)若c= ,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和.求:

I)求数列的通项公式;

II)求数列的前n项和

III)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中)的周期为,且图象上一个最低点为

(1)求的解析式;

(2)当时,求的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A,B两点,连接PA并延长,交圆O于点C,连续PB交圆O于点D,若MC=BC.

(1)求证:△APM∽△ABP;
(2)求证:四边形PMCD是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边三角形的中线与中位线相交于,已知旋转过程中的一个图形,下列命题中,错误的是

A. 恒有

B. 异面直线不可能垂直

C. 恒有平面⊥平面

D. 动点在平面上的射影在线段

查看答案和解析>>

同步练习册答案