精英家教网 > 高中数学 > 题目详情
6.如图是一个几何体的三视图,则该机合体的表面积为28π+236.

分析 根据几何体的三视图,得出该几何体是四棱柱与圆柱体的组合体,结合图中数据求出它的表面积.

解答 解:根据几何体的三视图,得;
该几何体是四棱柱与圆柱体的组合体,
且四棱柱是底面长为6,宽为5的矩形,高为8的直棱柱;
圆柱体的底面直径为4,高为6;
所以该几何体的表面积为
S=S圆柱+S棱柱
=2π×2×6+π•22+2(6×5+6×8+5×8)
=28π+236.
故答案为:28π+236.

点评 本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知向量($\overrightarrow{a}$+3$\overrightarrow{b}$)⊥(7$\overrightarrow{a}$-5$\overrightarrow{b}$)且($\overrightarrow{a}$-4$\overrightarrow{b}$)⊥(7$\overrightarrow{a}$-2$\overrightarrow{b}$),求向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点P在椭圆4x2+3y2=12上,则点P到椭圆两焦点的距离之和为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=mx2-2x+1.
(1)如果m=1,且x∈[-2,1],求函数y的取值范围;
(2)解关于m的方程f(m)=0;
(3)当x∈[1,2]时,y≥0恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某同学参加学校自主招生3门课程的考试,假设该同学第一门课程取得优秀成绩概率为$\frac{2}{5}$,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为
ξ0123
p$\frac{6}{125}$xy$\frac{24}{125}$
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率及求p,q的值;
(Ⅱ)求该生取得优秀成绩课程门数的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知正三棱锥V-ABC的正视图和俯视图如图所示,其中VA=4,AC=2$\sqrt{3}$,求该三棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从地平面A、B、C三点测得某山顶的仰角均为15°,设∠BAC=30°,而BC=200m,求山高(结果精确到0.1m).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F1,F2是椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{m}^{2}-4}$=1(m>2)的左,右焦点,点P在椭圆上,若|PF1|•|PF2|=2$\sqrt{3}$m,则该椭圆离心率的取值范围为$[\frac{\sqrt{7}-\sqrt{3}}{2},\frac{\sqrt{3}}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f′(x)是函数f(x)的导函数,x∈R时,f′(x)+f(x)>0,则x1<x2,结论正确的是(  )
A.e${\;}^{{x}_{2}}$f(x1)>e${\;}^{{x}_{1}}$f(x2B.e${\;}^{{x}_{2}}$f(x1)<e${\;}^{{x}_{1}}$f(x2
C.e${\;}^{{x}_{1}}$f(x1)>e${\;}^{{x}_{2}}$f(x2D.e${\;}^{{x}_{1}}$f(x1)<e${\;}^{{x}_{2}}$f(x2

查看答案和解析>>

同步练习册答案