A. | (-∞,-2)∪(1,+∞) | B. | (-∞,-1]∪[2,+∞) | C. | (-∞,-2]∪[1,+∞) | D. | (-∞,-1)∪(2,+∞) |
分析 作出函数f(x)的图象,数形结合,得:2+a2>22+a,由此能求出实数a的取值范围.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,(x>2)}\\{x+{a}^{2},(x≤2)}\end{array}\right.$,
存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2)成立,
∴可作出如右图所示的函数f(x)的图象,
结合图象得:2+a2>22+a,
∴a2-a-2>0,
解得a<-1或a>2.
∴实数a的取值范围是(-∞,-1)∪(2,+∞).
故选:D.
点评 本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,$\frac{3}{2}$] | B. | [$\frac{3}{2}$,+∞) | C. | [1,2] | D. | (-∞,1]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com