精英家教网 > 高中数学 > 题目详情
正方形ABCD的边长为1,记
AB
=
a
BC
=
b
AC
=
c
,则下列结论错误的是(  )
A、(
a
-
b
)•
c
=0
B、(
a
+
b
-
c
)•
a
=0
C、(|
a
-
c
|-|
b
|)
a
=
0
D、|
a
+
b
+
c
|=
2
分析:画出正方形ABCD,结合题意,逐一验证选项的正误,选出错误的选项.
解答:精英家教网解:由题意画出正方形ABCD,
a
-
b
)•
c
=0显然正确;
a
+
b
-
c
)•
a
=
a
a
-
a
a
=0,正确;
(|
a
-
c
|-|
b
|)
a
=0
a
=
0
,正确;
|
a
+
b
+
c
|=2
2
2
,错误.
故选D.
点评:本题考查数量积判断两个平面向量的垂直关系,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正方形ABCD的边长为2,E为CD的中点,则
AE
BD
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD的边长为1,正方形ADEF所在平面与平面ABCD互相垂直,G,H是DF,FC的中点.
(1)求证:GH∥平面CDE;
(2)求证:BC⊥平面CDE;
(3)求三棱锥G-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方形ABCD的边长为4,中心为M,球O与正方形ABCD所在的平面相切于M点,过点M的球的直径另一端点为N,线段NA与球O的球面的交点为E,且E恰为线段NA的中点,则球O的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD的边长是4,对角线AC与BD交于O.将正方形ABCD沿对角线BD折成60°的二面角,并给出下面结论:①AC⊥BD;②AD⊥CO;③△AOC为正三角形;④cos∠ADC=
3
4
,则其中的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州模拟)已知中心为O的正方形ABCD的边长为2,点M,N分别为线段BC,CD上的两个不同点,且|
MN
|=1,则
OM
ON
的取值范围是
[2-
2
,1]
[2-
2
,1]

查看答案和解析>>

同步练习册答案