精英家教网 > 高中数学 > 题目详情
12.如图,在直三棱柱ABC-A1B1C1中,点D是AB的中点,$A{A_1}=AC=CB=\frac{{\sqrt{2}}}{2}AB$
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求二面角D-CB1-B的平面角的余弦值.

分析 (Ⅰ)证明AC⊥平面BCC1,即可证明:AC⊥BC1
(Ⅱ)取BC中点E,过D作DF⊥B1C于F,连接EF,证明∠EFD是二面角D-CB1-B的平面角,即可求二面角D-CB1-B的平面角的余弦值.

解答 (Ⅰ)证明:直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4,AB=5,
∵AC2+BC2=AB2
∴AC⊥BC,
又 AC⊥C1C,且BC∩C1C=C
∴AC⊥平面BCC1,又BC1?平面BCC1
∴AC⊥BC1                   …(4分)
(Ⅱ)解:取BC中点E,过D作DF⊥B1C于F,连接EF       …(5分)
∵D是AB中点,
∴DE∥AC,又AC⊥平面BB1C1C,
∴DE⊥平面BB1C1C,
又∵EF?平面BB1C1C,BC1?平面BB1C1C
∴DE⊥EF.
∴BC1⊥DE  
又∵DF⊥BC1 且DE∩DF=D
∴B1C⊥平面DEF,EF?平面DEF         …(7分)
∴B1C⊥EF
又∵DF⊥B1C,
∴∠EFD是二面角D-CB1-B的平面角      …(9分)
∵AC=BC=$\sqrt{2}$=AA1
∴在△DEF中,DE⊥EF,$DE=\frac{{\sqrt{2}}}{2}$,$EF=\frac{1}{2}$,$DF=\frac{{\sqrt{3}}}{2}$
∴$cos∠EFD=\frac{EF}{DF}=\frac{{\sqrt{3}}}{3}$…(11分)
∴二面角D-CB1-B余弦值为$\frac{{\sqrt{3}}}{3}$…(12分)

点评 本题考查空间中直线与平面之间的垂直关系,考查面与面的夹角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在等比数列{an}中,公比q≠1,等差数列{bn}满足b1=a1=3,b4=a2,b13=a3
(1)求数列{an}和{bn}的通项公式;
(2)记cn=(-1)nbn+anbn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2+1,g(x)=f(f(x))-2λf(x),若函数g(x)在区间[-2,-1]为增函数,则λ的取值范围为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)是定义在R上的偶函数,x<0时,f(x)=x3,那么f(2)的值是(  )
A.8B.-8C.$\frac{1}{8}$D.$-\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线C:y2=2px(p>0)上一点(5,m)到焦点的距离为6,P,Q分别为抛物线C与圆M:(x-6)2+y2=1上的动点,当|PQ|取得最小值时,向量$\overrightarrow{PQ}$在x轴正方向上的投影为(  )
A.2-$\frac{{\sqrt{5}}}{5}$B.2$\sqrt{5}$-1C.1-$\frac{{\sqrt{21}}}{21}$D.$\sqrt{21}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.向量$\overrightarrow{OA}$对应的复数为1+4i,向量$\overrightarrow{OB}$对应的复数为-3+2i,则向量$\overrightarrow{OA}+\overrightarrow{OB}$对应的复数为(  )
A.4+2iB.-4-2iC.-2+4iD.-2+6i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,周期是$\frac{π}{2}$的偶函数是(  )
A.y=sin4xB..y=tan2xC.y=cos22x-sin22xD.y=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三次函数f(x)=x3+ax2+7ax在 (-∞,+∞)是增函数,则a的取值范围是(  )
A.0≤a≤21B.a=0或a=7C.a<0或a>21D.a=0或a=21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线x-y+2=0与圆C:(x-3)2+(y-3)2=4交于点A,B,过弦AB的中点的直径为MN,则四边形AMBN的面积为(  )
A.$8\sqrt{2}$B.8C.$4\sqrt{2}$D.4

查看答案和解析>>

同步练习册答案