【题目】已知直线的方程为,抛物线:的焦点为,点是抛物线上到直线距离最小的点.
(1)求点的坐标;
(2)若直线与抛物线交于两点,为中点,且,求直线的方程.
【答案】(1)(1,2) (2)9x+3y-7=0
【解析】
(1)根据点到直线的距离公式和二次函数的性质得出P点坐标;(2)设出点M的坐标,由向量坐标化得到M(1,-),设出点A和点B的坐标,代入抛物线,两式做差得到斜率,由点斜式得到直线方程.
(1)设点P的坐标为(x0,y0),则y02=4x0,所以,点P到直线的距离:
d ====≥
当且仅当y0=2时取最小值,此时P点坐标为(1,2).
(2)设点M的坐标为(x1,y1)因为=3, 又点P(1,2),又F(1,0)可得:(0,-2)=3(x1-1,y1-0)
经计算得:点M(1,-)
设点A(x2,y2)点B(x3,y3),于是
两式相减可得:(y3- y2)( y3+y2)=4(x3-x2) 化简得: =,
所以k=-3
于是,y+=-3(x-1),整理得9x+3y-7=0
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,离心率为,左、右焦点分别为, .
(1)求椭圆的方程;
(2)若直线: 与椭圆交于, 两点,与以为直径的圆交于, 两点,且满足,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准()》于年月日正式实施.车辆驾驶人员酒饮后或者醉酒后驾车血液中的酒精含量阀值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图,
喝瓶啤酒的情况
且图表示的函数模型,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:,)
( )
驾驶行为类型 | 阀值 |
饮酒后驾车 | , |
醉酒后驾车 |
车辆驾车人员血液酒精含量阀值
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲同学写出三个不等式::,:,:,然后将的值告诉了乙、丙、丁三位同学,要求他们各用一句话来描述,以下是甲、乙、丙、丁四位同学的描述:
乙:为整数;
丙:是成立的充分不必要条件;
丁:是成立的必要不充分条件;
甲:三位同学说得都对,则的值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(>0)的部分图象如图所示,A,B分别是这部分图象上的最高点、最低点,为坐标原点,若·=0,则下列结论:①函数是周期为4的奇函数;②函数是周期为4的偶函数;③函数的最大值是;④函数向左平移个单位后得到的函数图象关于原点对称;其中错误命题的个数是( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点A(m, )(m∈R且m>0)为圆心的圆与x轴相交于O,B两点,与y轴相交于O,C两点,其中O为坐标原点.
(1)当m=2时,求圆A的标准方程;
(2)当m变化时,△OBC的面积是否为定值?若是,请求出该定值;若不是,请说明理由;
(3)设直线与圆A相交于P,Q两点,且 |OP|=|OQ|,求 |PQ| 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,离心率为,过的直线与椭圆交于两点,且的周长为8.
(1)求椭圆的方程;
(2)直线过点,且与椭圆交于两点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com