精英家教网 > 高中数学 > 题目详情
已知函数f(x)=mlnx+(m-1)x(m∈R).
(Ⅰ)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)讨论f(x)的单调性.
考点:利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(Ⅰ)将m=2代入函数的表达式,求出函数的导数从而逐项斜率为k=3,进而求出切线方程;
(Ⅱ)函数f(x)的定义域为{x|x>0},先求出函数的导数,通过讨论m的范围,从而得到函数的单调性.
解答: 解:(Ⅰ)当m=2时,f(x)=2lnx+x,
f′(x)=
2
x
+1
f′(1)=
2
1
+1=3

f(1)=2ln1+1=1,
所以,曲线y=f(x)在点(1,f(1))处的切线方程为:
y-1=3(x-1),即3x-y-2=0.
(Ⅱ)函数f(x)的定义域为{x|x>0},
f′(x)=
2m
x
+m-1
=
2m+(m-1)x
x

(1)当m≥1时,f'(x)>0,f(x)在定义域(0,+∞)上单调递增;   
(2)当m<1时,令f'(x)=0,解得x=
2m
1-m

当m≤0时,f'(x)<0,f(x)在定义域(0,+∞)上单调递减;     
当0<m<1时,当x变化时,f'(x),f(x)变化状态如下表:
 x (0,
2m
1-m
 
2m
1-m
 (
2m
1-m
,+∞)
 f′(x)+ 0-
 f(x) 
∴f(x)在(0,
2m
1-m
)
单调递增,在(
2m
1-m
,+∞)
单调递减.
点评:本题考查了导数的应用,考查了函数的单调性,考查了分类讨论思想,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}通项公式为an=
-2n
2n+1
.求证:{
1
an+1
}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2x2-lnx在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是(  )
A、[1,3)
B、[1,
3
2
)
C、(-
1
2
3
2
)
D、[-
1
2
,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于(  )
A、
3
B、
6
C、
5
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人向同一目标射击,命中率分别为0.4、0.5,则恰有一人命中的概率为(  )
A、0.9B、0.2
C、0.7D、0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+2,g(x)=2ex(x+b),若曲线y=g(x)经过点P(0,2),且在点P处直线y=f(x)和y=g(x)有相同的切线(e为自然对数的底数).
(Ⅰ)求a、b的值;
(Ⅱ)若F(x)=x(f(x)+2),如果存在x1,x2∈[-3,-1],使得F(x1)-F(x2)≥M成立,求满足上述条件的最大整数M;
(Ⅲ)当k>1时,讨论方程kg(x)-f(x)=0在[2,+∞)上解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某果林培育基地从其培育的一批幼苗中随机选取了100株,测量其高度(单位:厘米),并将这些数据绘制成频率分布直方图(如图).若要从高度在[120,130),[130,140),[140,150]三组内的幼苗中,用分层抽样的方法选取30株送给友好单位,则从高度在[140,150]内的幼苗中选取的株数应为(  )
A、4B、5C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

化成Asin(ωx+φ)+B的形式.
(1)f(x)=4cosxsin(x+
π
6
)-1
(2)f(x)=
3
sinxcosx-cos2x+
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2|
b
|≠0,且关于x的方程x2+|
a
|x+
a
b
=0有实根,则向量
a
b
的夹角的取值范围是(  )
A、[
π
3
,π]
B、[0,
π
6
]
C、[
π
3
3
]
D、[
π
6
,π]

查看答案和解析>>

同步练习册答案