精英家教网 > 高中数学 > 题目详情

【题目】我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为________尺,体积是_______立方尺(注:1=10尺).

【答案】21 3892

【解析】

根据题意画出图形,利用棱锥与棱台的结构特征求出正四棱台的高,再计算它的体积.

如图所示:

正四棱锥P-A BCD的下底边长为二丈,即AB=20尺,高三丈,即PO=30尺,

截去一段后,得正四棱台ABCD-A'B'C'D',且上底边长为A'B'=6尺,

所以

解得

所以该正四棱台的体积是

故答案为:213892.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我市某区2018年房地产价格因棚户区改造实行货币化补偿,使房价快速走高,为抑制房价过快上涨,政府从20192月开始采用实物补偿方式(以房换房),3月份开始房价得到很好的抑制,房价渐渐回落,以下是20192月后该区新建住宅销售均价的数据:

月份

3

4

5

6

7

价格(百元/平方米)

83

82

80

78

77

1)研究发现,3月至7月的各月均价(百元/平方米)与月份之间具有较强的线性相关关系,求价格(百元/平方米)关于月份的线性回归方程;

2)用表示用(1)中所求的线性回归方程得到的与对应的销售均价的估计值,3月份至7月份销售均价估计值与实际相应月份销售均价差的绝对值记为,即.,则将销售均价的数据称为一个好数据,现从5个销售均价数据中任取2个,求抽取的2个数据均是好数据的概率.

参考公式:回归方程系数公式;参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(Ⅰ)求直线的直角坐标方程与曲线的普通方程;

(Ⅱ)已知点设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰梯形中,两腰,底边的三等分点,的中点.分别沿将四边形折起,使重合于点,得到如图2所示的几何体.在图2中,分别为的中点.

(1)证明:平面

(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)写出的极坐标方程与直线的直角坐标方程;

2)曲线上是否存在不同的两点(以上两点坐标均为极坐标,),使点的距离都为3?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰梯形中,的中点.现分别沿折起,点折至点,点折至点,使得平面平面,平面平面,连接,如图2.

(Ⅰ)若分别为的中点,求证:平面平面

(Ⅱ)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰梯形中,的中点.现分别沿折起,点折至点,点折至点,使得平面平面,平面平面,连接,如图2.

(Ⅰ)若平面内的动点满足平面,作出点的轨迹并证明;

(Ⅱ)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动实施健康中国战略,树立国家大卫生、大健康概念,手机APP也推出了多款健康运动软件,如微信运动,杨老师的微信朋友圈内有位好友参与了微信运动,他随机选取了位微信好友(女人,男人),统计其在某一天的走路步数,其中,女性好友的走路步数数据记录如下:

5860

8520

7326

6798

7325

8430

3216

7453

11754

9860

8753

6450

7290

4850

10223

9763

7988

9176

6421

5980

男性好友走路的步数情况可分为五个类别:步(说明表示大于等于,小于等于,下同),步,步,步,步及以上,且三种类别人数比例为,将统计结果绘制如图所示的条形图,若某人一天的走路步数超过步被系统认定为卫健型,否则被系统认定为进步型”.

1)若以杨老师选取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计杨老师的微信好友圈里参与微信运动名好友中,每天走路步数在步的人数;

2)请根据选取的样本数据完成下面的列联表并据此判断能否有以上的把握认定认定类型性别有关?

卫健型

进步型

总计

20

20

总计

40

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形的边长为2, . 是边上一点,线段于点.

(1)若的面积为,求的长;

(2)若,求.

查看答案和解析>>

同步练习册答案