【题目】某厂包装白糖的生产线,正常情况下生产出来的白糖质量服从正态分布(单位:).
(Ⅰ)求正常情况下,任意抽取一包白糖,质量小于的概率约为多少?
(Ⅱ)该生产线上的检测员某天随机抽取了两包白糖,称得其质量均小于,检测员根据抽检结果,判断出该生产线出现异常,要求立即停产检修,检测员的判断是否合理?请说明理巾.
附:,则,,.
【答案】(Ⅰ)0.0013 (Ⅱ)见解析
【解析】
(Ⅰ)由正常情况下生产出来的白糖质量服从正态分布(单位:),要求得正常情况下,任意抽取一包白糖,质量小于的概率,化为的形式,然后求解即可;
(Ⅱ)由(Ⅰ)可知正常情况下,任意抽取一包白糖,质量小于的概率为0.0013,可求得随机抽取两包检查,质量都小于的概率几乎为零,即可判定检测员的判断是合理的。
解:(Ⅰ)设正常情况下,该生产线上包装出来的白糖质量为,由题意可知。
由于,所以根据正态分布的对称性与“原则”可知
.
(Ⅱ)检测员的判断是合理的.
因为如果生产线不出现异常的话,由(Ⅰ)可知,随机抽取两包检查,质量都小于的概率约为,几乎为零,但这样的事件竟然发生了,所以有理由认为生产线出现异常,检测员的判断是合理的.
科目:高中数学 来源: 题型:
【题目】已知椭圆C的两个顶点分别为A(2,0),B(2,0),焦点在x轴上,离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点的坐标分别为,.三角形的两条边,所在直线的斜率之积是.
(1)求点的轨迹方程;
(2)设直线方程为,直线方程为,直线交于,点,关于轴对称,直线与轴相交于点.若的面积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线和距离之和的最小值为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三角形ABE与菱形ABCD所在的平面互相垂直,,,M是AB的中点.
(1)求证:;
(2)求二面角的余弦值;
(3)在线段EC上是否存在点P,使得直线AP与平面ABE所成的角为,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆, 是圆M内一个定点,P是圆上任意一点,线段PN的垂直平分线l和半径MP相交于点Q,当点P在圆M上运动时,点Q的轨迹为曲线E
(1)求曲线E的方程;
(2)过点D(0,3)作直线m与曲线E交于A,B两点,点C满足 (O为原点),求四边形OACB面积的最大值,并求此时直线m的方程;
(3)已知抛物线上,是否存在直线与曲线E交于G,H,使得G,H的中点F落在直线y=2x上,并且与抛物线相切,若直线存在,求出直线的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为0.
(1)求椭圆的方程;
(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,,求四边形面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com