精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线C1的参数方程为t为参数,0απ),曲线C2的参数方程为φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.

1)求曲线C2的极坐标方程;

2)设曲线C1与曲线C2的交点分别为ABM(﹣20),求|MA|2+|MB|2的最大值及此时直线C1的倾斜角.

【答案】1ρ2+2ρcosθ2ρsinθ10;(2)最大值10

【解析】

1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换,进一步利用三角函数关系式的变换和余弦型函数性质的应用求出结果.

2)利用一元二次方程根和系数关系式的应用和三角函数关系式的恒等变换及余弦型函数性质的应用求出结果.

解:(1)曲线C2的参数方程为φ为参数),

转换为直角坐标方程为(x+12+y123.

转换为极坐标方程为ρ2+2ρcosθ2ρsinθ10.

2)把直线C1的参数方程为t为参数,0απ),代入(x+12+y123

得到(﹣2+tcosα+12+tsinα123

整理得t22sinα+cosαt10

所以t1+t22cosα+sinα),t1t2=﹣1

则:|MA|2+|MB|241+2sinαcosα+24sin2α+6

时,|MA|2+|MB|2的最大值10.

此时直线C1的倾斜角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,焦距为,过点的直线与椭圆交于两点,若,且,则椭圆的离心率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代著名数学经典,其中对勾股定理的论述,比西方早一千多年,其中有这样一个问题:今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为0.5丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).己知弦尺,弓形高寸,估算该木材镶嵌墙内部分的体积约为( )(注:一丈=10=100寸,

A.300立方寸B.305.6立方寸C.310立方寸D.316.6立方寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代的四书是指:《大学》、《中庸》、《论语》、《孟子》,甲、乙、丙、丁名同学从中各选一书进行研读,已知四人选取的书恰好互不相同,且甲没有选《中庸》,乙和丙都没有选《论语》,则名同学所有可能的选择有______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过抛物线焦点的直线交抛物线于两点,记以为直径端点的圆为圆.

1)证明:圆与抛物线的准线相切;

2)设,点在焦点的右侧,圆轴交于两点,记的面积为的最大值(其中,点为圆与抛物线准线的切点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因此被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”的一个示意图,整个图形是一个圆面,其中黑色区域在轴右侧部分的边界为一个半圆.给出以下命题:

①在太极图中随机取一点,此点取自黑色部分的概率是

②当时,直线与白色部分有公共点;

③黑色阴影部分中一点,则的最大值为2

④设点,点在此太极图上,使得的范围是

其中所有正确结论的序号是(

A.①②B.②③C.①③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点的直线两点,圆是以线段为直径的圆.

1)证明:坐标原点在圆上;

2)设圆过点,求直线与圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求的单调性和极值;

(Ⅱ)若函数至少有1个零点,求的取值范围.

查看答案和解析>>

同步练习册答案