精英家教网 > 高中数学 > 题目详情
给定下列命题:
①“若k>0,则方程x2+2x-k=0”有实数根;
②若a>b>0,c>d>0,则ac>bd;
③对角线相等的四边形是矩形;
④若xy=0,则x、y中至少有一个为0.
其中真命题的序号是(  )
分析:①中,k>0时,△>0,故方程x2+2x-k=0”有实数根;
②由不等式的性质知,是真命题;
③如等腰梯形对角线相等,不是矩形;
④若xy=0,则x=0或y=0,故可判断真假.
解答:解:①中△=4-4(-k)=4+4k>0,故为真命题;
②由不等式的性质知,a>b>0,c>d>0,则ac>bd,显然是真命题;
③如等腰梯形对角线相等,不是矩形,故为假命题;
④若xy=0,则x=0或y=0,即x、y中至少有一个为0,为真命题.
故选B.
点评:本题考查命题真假的判断,考查学生分析解决问题的能力,知识综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定下列命题:
①半径为2,圆心角的弧度数为
1
2
的扇形的面积为
1
2

②若a、β为锐角,tan(α+β)=
1
3
tanβ=
1
2
α+2β=
π
4

③若A、B是△ABC的两个内角,且sinA<sinB,则BC<AC;
④若a、b、c分别是△ABC的三个内角A、B、C所对边的长,且a2+b2-c2<0,则△ABC一定是钝角三角形.
其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给定下列命题:
(1)空间直角坐标系O-XYZ中,点A(-2,3,-1)关于平面XOZ的对称点为A′(-2,-3,-1).
(2)棱长为1的正方体外接球表面积为8π.
(3)已知等比数列{an}的前n项和为Sn,若Sn=2n+c(c为常数),则c=-1.
(4)若非零实数a1,b1,a2,b2满足
a1
a2
=
b1
b2
,则集合{x|a1x+b1>0}={x|a2x+b2>0}.
(5)已知等差数列{an}的前n项和为Sn,则点P1(1,
S1
1
)、P2(2,
S2
2
)、…、Pn(n,
Sn
n
)
(n∈N*)必在同一直线上.
以上正确的命题是
(1)(3)(5)
(1)(3)(5)
(请将你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给定下列命题:其中真命题的个数是(  )
(1)若k>0,则方程x2+2x-k=0有实数根;
(2)“若a>b,则a+c>b+c”的否命题;
(3)“矩形的对角线相等”的逆命题;
(4)“若xy=0,则x,y中至少有一个为0”的逆否命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定下列命题:
①函数y=sin(
π
4
-2x)
的单增区间是[kπ-
π
8
,kπ+
8
](k∈Z)

②已知|
a
|=|
b
|=2,
a
b
的夹角为
π
3
,则
a
+
b
a
上的投影为3;
③函数y=f(x)与y=f-1(x)-1的图象关于直线x-y+1=0对称;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
处取得最小值,则f(
2
-x)=-f(x)

⑤若sinx+siny=
1
3
,则siny-cos2x
的最大值为
4
3

则真命题的序号是
①②③④
①②③④

查看答案和解析>>

同步练习册答案