精英家教网 > 高中数学 > 题目详情
已知椭圆C的焦点在x轴上,中心在原点,离心率,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1、A2,点M是椭圆上异于A1、A2的任意一点,设直线MA1、MA2的斜率分别为KMA1、KMA2,证明KMA1•KMA2为定值;
(Ⅲ)设椭圆方程,A1、A2为长轴两个端点,M为椭圆上异于A1、A2的点,KMA1、KMA2分别为直线MA1、MA2的斜率,利用上面(Ⅱ)的结论得KMA1•KMA2=______(只需直接填入结果即可,不必写出推理过程).
【答案】分析:(Ⅰ)根据离心率,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切,建立方程,求出几何量,从而可得椭圆方程;
(Ⅱ)由椭圆方程得A1(-,0),A2,0),设M点坐标(x,y),表示出直线MA1、MA2的斜率分别为KMA1、KMA2,利用M再椭圆上,代入计算,可得KMA1•KMA2是定值;
(Ⅲ)由(Ⅱ)的结论可得KMA1•KMA2=-
解答:(Ⅰ)解:∵离心率,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切
,b==
∴a=
∴椭圆方程为           …(4分)
(Ⅱ)证明:由椭圆方程得A1(-,0),A2,0),
设M点坐标(x,y),则,∴

=-
∴KMA1•KMA2是定值                   …(10分)
(Ⅲ)解:KMA1•KMA2=-       …(12分)
点评:本题考查椭圆方程的求法,证明KMA1•KMA2为定值.解题时要认真审题,注意挖掘题设中的隐含条件,灵活运用椭圆性质,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴上,一个顶点的坐标是(0,1),离心率等于
2
5
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于M点,若
MA
=λ1
AF
MB
=λ2
BF
,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴上,中心在原点,离心率e=
3
3
,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1、A2,点M是椭圆上异于A1、A2的任意一点,设直线MA1、MA2的斜率分别为kMA1kMA2,证明kMA1kMA2为定值;
(Ⅲ)设椭圆方程
x2
a2
+
y2
b2
=1
,A1、A2为长轴两个端点,M为椭圆上异于A1、A2的点,kMA1kMA2分别为直线MA1、MA2的斜率,利用上面(Ⅱ)的结论得kMA1kMA2=
 
(只需直接填入结果即可,不必写出推理过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知椭圆C的焦点在x轴上,中心在原点,离心率e=
3
3
,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(I)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1,A2,点M是椭圆上异于Al,A2的任意一点,设直线MA1,MA2的斜率分别为kMA1kMA2,证明kMA1kMA2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴,焦距为2
3
,F1,F2是椭圆的焦点,P为椭圆上一点,且|PF1|+|PF2|=4.
(Ⅰ)求此椭圆C的标准方程;
(Ⅱ)求证:直线y=x+
5
与椭圆C有且仅有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴上,中心在原点,离心率e=
3
3
,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1、A2,点M是椭圆上异于A1、A2的任意一点,设直线MA1、MA2的斜率分别为KMA1、KMA2,证明KMA1•KMA2为定值;
(Ⅲ)设椭圆方程
x2
a2
+
y2
b2
=1
,A1、A2为长轴两个端点,M为椭圆上异于A1、A2的点,KMA1、KMA2分别为直线MA1、MA2的斜率,利用上面(Ⅱ)的结论得KMA1•KMA2=
-
b
a
-
b
a
(只需直接填入结果即可,不必写出推理过程).

查看答案和解析>>

同步练习册答案