精英家教网 > 高中数学 > 题目详情

【题目】已知

(1)求函数的定义域;

(2)判断函数的奇偶性,并予以证明。

【答案】(1)(-1,1)(2)奇函数

【解析】

(1)由题意可得f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x)=,由 求得函数的定义域

(2)由于f(x)﹣g(x)=,它的定义域为(﹣1,1),令h(x)=f(x)﹣g(x),可得h(﹣x)=﹣h(x),从而得到函数h(x)=f(x)﹣g(x)为奇函数.

(1)由于f(x)=loga(1+x),g(x)=loga(1﹣x),故f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x)=

,求得﹣1<x<1,故函数的定义域为(﹣1,1).

(2)由于f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x)=,它的定义域为(﹣1,1),令h(x)=f(x)﹣g(x),

可得h(﹣x)==﹣=﹣h(x),故函数h(x)=f(x)﹣g(x)为奇函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)aln xbx2图象上点P(1f(1))处的切线方程为2xy30.

(1)求函数f(x)的解析式及单调区间;

(2)若函数g(x)f(x)mln 4上恰有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,其前项和为是等比数列,.

(1)求数列的通项公式;

(2)求数列的前10项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某公司生产某款手机的年固定成本为40万元,每生产1万只还需另投入16万元.设该公司一年内共生产该款手机万只并全部销售完,每万只的销售收入为万元,且

(1)写出年利润(万元)关于年产量(万只)的函数解析式;

(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数在区间[0,1]上存在零点,求实数的取值范围;

(2)当时,若对任意∈[0,4],总存在∈[0,4],使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程的两个根为.

(1)求的值;

(2)若函数上单调递减,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求函数f(x)= 的定义域

(2)若当x[-1,1]时,求函数f(x)=3x-2的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形和矩形所在平面互相垂直

(1)求二面角的大小;

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体中, 平面 .

求四面体的四个面的面积中,最大的面积是多少?

Ⅱ)证明:在线段上存在点,使得,并求的值.

查看答案和解析>>

同步练习册答案