精英家教网 > 高中数学 > 题目详情

【题目】已知向量a=(2x-y+1,x+y-2),b=(2,-2).

①当x、y为何值时,a与b共线?

②是否存在实数x、y,使得a⊥b,且|a|=|b|?若存在,求出xy的值;若不存在,说明理由.

【答案】①. ;②. .

【解析】试题分析:1)由a与b共线,可得存在非零实数λ使得aλb,从而可得结论;

(2)由a⊥b得,(2x﹣y+1)×2+(x+y﹣2)×(﹣2)=0,由|a|=|b|得,(2x﹣y+1)2+(x+y﹣2)2=8,从而可得结论.

试题解析:

①∵ab共线,

存在非零实数λ使得aλb

ab(2xy1)×2(xy2)×(2)0

x2y30.(1)

|a||b|(2xy1)2(xy2)28.(2)

(1)(2)∴xy=-1xy..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的生育二胎放开政策的热度,现在某市进行调查,随机调查了人,他们年龄大点频数分布及支持生育二胎人数如下表:

年龄

频数

支持“生育二胎”

由以上统计数据填下面列联表,并问是否有的把握认为以岁为分界点对生育二胎放开政策的支持度有差异:

年龄不低于岁的人数

年龄低于岁的人数

合计

支持

不支持

合计

若对年龄在的的被调查人中随机选取两人进行调查,恰好这两人都支持生育二胎放开的概率是多少?

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与轴相切,且切点在轴的正半轴上.

1)求曲线直线轴围成图形的面积

2若函数上的极小值不大于的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(sinx+cosx)2-2cos2x,

(1)求函数f(x)的最小正周期和单调递减区间;

(2)当x∈时,求f(x)的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项运动组委会为了搞好接待工作,招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.得到下表:

(1)根据以上数据完成2×2列联表, 问:能否在犯错误的概率不超过0.10的前提下,认为性别与喜爱运动有关?并说明理由.

(2)如果从喜欢运动的女志愿者中(其中恰有4人会外语)抽取2名,求抽出的志愿者中能胜任翻译工作的人数的分布列及数学期望.

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

处取极值在点处的切线方程

)当有唯一的零点求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①命题“ ”的否定是:“

若样本数据的平均值和方差分别为则数据的平均值和标准差分别为

③两个事件不是互斥事件的必要不充分条件是两个事件不是对立事件;

④在列联表中,若比值相差越大,则两个分类变量有关系的可能性就越大

⑤已知为两个平面,且 为直线.则命题:“若的逆命题和否命题均为假命题

⑥设定点,动点满足条件为正常数),则的轨迹是椭圆.其中真命题的个数为( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,关于实数的不等式的解集为

1)当时,解关于的不等式:

2)是否存在实数,使得关于的函数)的最小值为?若存在,求实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图,已知四棱锥中,底面为菱形,平面分别是的中点.

I)证明:平面

II)取,在线段上是否存在点,使得与平面所成最大角的正切值为,若存在,请求出点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案