如图M为的△ABC的中线AD的中点,过M的直线分别与边AB,AC交于点P,Q,设=x,=y记y=f(x)
(1)求函数y=f(x)的表达式;
(2)设g(x)=x3+3a2x+2a,(x∈[0,1]),若对于任意x1∈[,1],总存在x2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围;
科目:高中数学 来源: 题型:
3 |
m2+1 |
m |
m2+1 |
m |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源:江西省南昌市2012届高三调研测试数学理科试题 题型:044
如图M为的△ABC的中线AD的中点,过M的直线分别与边AB,AC交于点P,Q,设=x,=y,记y=f(x)
(1)求函数y=f(x)的表达式;
(2)设g(x)=x3+3a2x+2a,(x∈[0,1]),若对于任意x1∈[,1],总存在x2∈[0,1]使得f(x1)=g(x2)成立,求实数a的取值范围;
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省南通市如皋市高三(上)期中数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省高三下学期模拟预测文科数学试卷(解析版) 题型:解答题
如图,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.
(Ⅰ)证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.
【解析】第一问:取AC中点F,连结OF、FB.∵F是AC的中点,O为CE的中点,
∴OF∥EA且OF=且BD=
∴OF∥DB,OF=DB,
∴四边形BDOF是平行四边形。
∴OD∥FB
第二问中,当N是EM中点时,ON⊥平面ABDE。 ………7分
证明:取EM中点N,连结ON、CM, AC=BC,M为AB中点,∴CM⊥AB,
又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,
∴CM⊥面ABDE,∵N是EM中点,O为CE中点,∴ON∥CM,
∴ON⊥平面ABDE。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com