精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3x2axax∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.
(1)单调递增区间是(-∞,-1),(a,+∞);单调递减区间是(-1,a)(2)
(1)f′(x)=x2+(1-a)xa=(x+1)(xa).
f′(x)=0,得x1=-1,x2a>0.
x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,-1)
-1
(-1,a)
a
(a,+∞)
f′(x)

0

0

f(x)
?
极大值
?
极小值
?
故函数f(x)的单调递增区间是(-∞,-1),(a,+∞);单调递减区间是(-1,a).
(2)由(1)知f(x)在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f(x)在区间(-2,0)内恰有两个零点当且仅当解得0<a.
所以a的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求的值;
(3)若f(x)<x2在(1,上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=axx2g(x)=xln aa>1.
(1)求证:函数F(x)=f(x)-g(x)在(0,+∞)上单调递增;
(2)若函数y-3有四个零点,求b的取值范围;
(3)若对于任意的x1x2∈[-1,1]时,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)证明函数在区间上单调递减;
(2)若不等式对任意的都成立,(其中是自然对数的底数),求实数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(原创)若对定义在上的可导函数,恒有,(其中表示函数的导函数的值),则(    )
A.恒大于等于0B.恒小于0
C.恒大于0D.和0的大小关系不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数yf(x)(x∈R)的图象如图所示,则不等式xf′(x)<0的解集为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2xsin x+cos x.
(1)若曲线yf(x)在点(af(a))处与直线yb相切,求ab的值;
(2)若曲线yf(x)与直线yb有两个不同交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)的导函数f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=(   ).
A.-e B.-1 C.1 D.e

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=+ln x,若函数f(x)在[1,+∞)上为增函数,则正实数a的取值范围是______.

查看答案和解析>>

同步练习册答案