精英家教网 > 高中数学 > 题目详情
某工厂生产某种产品,已知该产品的月生产量x(吨)与每吨产品的价格P(元/吨)之间的关系式为P=24200-
15
x2
,且生产x吨的成本为R=50000+200x(元).
(1)求该工厂月利润L(元)关于月生产量x(吨)的函数关系式;(月利润=月收入-月成本)
(2)求该工厂每月生产多少吨产品才能使月利润达到最大?并求出最大利润.
分析:(1)根据月利润=月收入-月成本可知L=Px-R,代入解析式即可求出所求;
(2)利用导数研究函数的单调性,从而求出函数的最值时相应的x的值及其最值.
解答:解:(1)L=Px-R=(24200-
1
5
x2
)x-(50000+200x)
=-
1
5
x3
+24000x-50000(x>0)
(2)y′=-
3
5
x2
+24000,
由y'=0,得x=200
∵0<x<200时y'>0,y'<0
∴当x=200时,ymax=3150000(元)
该工厂每月生产200吨产品才能使月利润达到最,最大利润为3150000.
点评:本题主要考查了建立数学模型,三次函数的最值用导数来求解,同时考查了应用题的阅读能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂生产某种产品,已知该产品的产量x(吨)与每吨产品的价格P(元/吨)之间的关系为P=24200-
15
x2
,且生产x吨的成本为R=50000+200x元.问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元,又知总收入k是单位产品数Q的函数,k(Q)=40Q-
120
Q2,则总利润L(Q)的最大值是
2500万元
2500万元

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产某种产品,已知该产品每吨的价格P(元)与产量x(吨)之间的关系式为 P=24200-
15
x2
,且生产x吨的成本为(50000+200x)元,则该厂利润最大时,生产的产品的吨数为
200
200

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:
x 3 4 5 6
y 2.5 3 4 4.5
据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是(  )

查看答案和解析>>

同步练习册答案