精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\sqrt{3}$sinωxcosωx-$\frac{1}{2}$cos2ωx,ω>0,x∈R,且函数f(x)的最小正周期为π;
(1)求ω的值和函数f(x)的单调增区间;
(2)在△ABC中,角A、B、C所对的边分别是a、b、c,又f($\frac{A}{2}$+$\frac{π}{3}$)=$\frac{4}{5}$,b=2,△ABC的面积等于3,求边长a的值.

分析 (1)利用倍角公式结合两角差的正弦函数公式化简函数解析式,再由周期公式列式求得ω的值,解得函数解析式,令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2x+$\frac{π}{2}$,k∈Z,即可求得函数的增区间.
(2)由f($\frac{A}{2}+\frac{π}{3}$)=$\frac{4}{5}$,可求sinA的值,利用三角形面积公式可求c,进而利用余弦定理即可求得a的值.

解答 (本题满分为12分)
解:(1)因为f(x)=$\sqrt{3}$sinωxcosωx-$\frac{1}{2}$cos2ωx=$\frac{\sqrt{3}}{2}$sin2ωx-$\frac{1}{2}$cos2ωx=sin(2ωx-$\frac{π}{6}$),…(2分)
由f(x)的最小正周期为π,得:ω=1,…(3分)
∵2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2x+$\frac{π}{2}$,k∈Z,
即 kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,…(5分)
所以,函数的增区间为:[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z,…(6分)
(2)∵f($\frac{A}{2}+\frac{π}{3}$)=sin(A+$\frac{π}{2}$)=$\frac{4}{5}$,A∈(0,π),
∴cosA=$\frac{4}{5}$,sinA=$\frac{3}{5}$,…(8分)
∵S=$\frac{1}{2}$bcsinA=3,b=2,sinA=$\frac{3}{5}$,
∴c=5. …(10分)
由余弦定理a2=b2+c2-2bccosA=13,
∴a=$\sqrt{13}$.   …(12分)

点评 本题考查y=Asin(ωx+φ)型函数的图象和性质,考查了两角和与差的正弦函数公式,三角形面积公式,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,O1是A1C1和B1D1的交点.
(1)若正四棱柱的高与底面边长相等,求二面角A-B1D1-A1的大小(结果用反三角函数值表示);
(2)若点C到平面AB1D1的距离为$\frac{4}{3}$,求正四棱柱ABCD-A1B1C1D1的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.现要完成下列3项抽样调查:
①从15件产品中抽取3件进行检查;
②某公司共有160名员工,其中管理人员16名,技术人员120名,后勤人员24名,为了了解员工对公司的意见,拟抽取一个容量为20的样本;
③电影院有28排,每排有32个座位,某天放映电影《英雄》时恰好坐满了观众,电影放完后,为了听取意见,需要请28名观众进行座谈.
较为合理的抽样方法是(  )
A.①简单随机抽样,②系统抽样,③分层抽样
B.①分层抽样,②系统抽样,③简单随机抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①简单随机抽样,②分层抽样,③系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.cos330°等于(  )
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A(1,1),B(-1,5),向量$\overrightarrow{AC}$=2$\overrightarrow{AB}$,则点C的坐标为(-3,9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.甲、乙、丙三人,一人在看书,一人在画画,一人在听音乐.已知:①甲不看书;②若丙不画画,则乙不听音乐;③若乙在看书,则丙不听音乐.则(  )
A.甲一定在画画B.甲一定在听音乐C.乙一定不看书D.丙一定不画画

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.方程ax+by+c=0表示倾斜角为锐角的直线,则必有(  )
A.ab>1B.ab<0C.a>0或b<0D.a>0且b<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在长方体ABCD-A1B1C1D1中,E是A1C1与B1D1的交点,AB=BC=$\sqrt{2}$,AA1=1.
(1)求证:AE∥平面C1BD;
(2)求证:CE⊥平面C1BD;
(3)求二面角A-BC1-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a,b,c是三条不同的直线,α,β是两个不同的平面,给出下列命题:
①a?α,α∥β,则a∥β;
②若a∥α,α∥β,则a∥β;
③若α∥β,a⊥α,则a⊥β;
④若a∥β,a∩α=A,则a与β必相交;
⑤若异面直线a与b所成角为50°,b∥c,a与c异面,则a与c所成角为50°.
其中正确命题的序号为①③④⑤.

查看答案和解析>>

同步练习册答案