精英家教网 > 高中数学 > 题目详情
已知x、y满足条件
x-y+5≥0
x+y≥0
x≤3.
则2x+4y的最小值为(  )
A、6B、-6C、12D、-12
分析:画出不等式组对应的可行域,将目标函数变形,画出目标函数对应的直线,由图得到当直线过A点时纵截距最小,z最小.
解答:精英家教网解:作出平面区域如下图所示,令z=2x+4y,欲求z的最小值,
即求y=-
1
2
x+
z
4
在y轴上截距的最小值.可以看出当直线过点(3,-3)时,纵截距最小.
∴zmin=2×3+4×(-3)=-6.
故选B.
点评:本题考查画不等式组表示的平面区域:直线定边界,特殊点定区域结合图形求函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y满足条件
x-y+5≥0
x+y≥0
x≤3
,则z=
x+y+2
x+3
的最小值((  )
A、4
B、
13
6
C、
1
3
D、-
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足条件
x-2y≥0
x+y-3≥0
2x-y-6≤0
,则z=x+2y的最大值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足条件
x≥0
y≥0
x+y≥2
,则x2+y2的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足条件
x-y+1≥0
x+y-2≥0
x≤2
,则
2x
4y
的最大值为
 

查看答案和解析>>

同步练习册答案