精英家教网 > 高中数学 > 题目详情

如果函数f(x)=kx+b在R上单调递减,则


  1. A.
    k>0
  2. B.
    k<0
  3. C.
    b>0
  4. D.
    b<0
B
分析:易得函数的图象为下降趋势的直线,进而可得斜率<0.
解答:∵函数f(x)=kx+b在R上单调递减,
∴其图象为下降趋势的直线,
故其斜率k<0
故选B
点评:本题考查一次函数的单调性,从直线的升降趋势和斜率的关系入手是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数f(x)的图象恰好通过k(k∈N*)个格点,则称函数f(x)为k阶格点函数、下列函数:①f(x)=sinx;②f(x)=π(x-1)2+3;③f(x)=(
1
3
)x
;④f(x)=log0.6x其中是一阶格点函数的有(  )
A、①②B、①④
C、①②④D、①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=|lg|2x-1||在定义域的某个子区间(k-1,k+1)上不存在反函数,则k的取值范围是(  )
A、[-
1
2
,2)
B、(1,
3
2
]
C、[-1,2)
D、(-1,-
1
2
]∪[
3
2
,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

在R上定义运算:p?q=-
1
3
(p-c)(q-b)+4bc
(b、c∈R是常数),已知f1(x)=x2-2c,f2(x)=x-2b,f(x)=f1(x)f2(x).
①如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值;
②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;
③记g(x)=|f′(x)|(-1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3-3bx2+4b3=(x+b)(x-2b)2

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数f(x)的图象恰好通过k(k∈N*)个格点,则称函数f(x)为k阶格点函数.下列函数:
①f(x)=sinx;  ②f(x)=π(x-1)2+3;  ③f(x)=(
13
)x
;  ④f(x)=log0.6x.其中是一阶格点函数的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,横坐标、纵坐标均为整数的点称为“格点”,如果函数f(x)的图象恰好通过k(k∈N*)个格点,则称函数f(x)为“k阶格点函数”.下列函数中是“一阶格点函数”的有
 

①f(x)=|x|;②f(x)=
2
(x-1)2+3
;③f(x)=(
1
2
)x-2
;④f(x)=log
1
2
(x+1)
  ⑤f(x)=
1
x-1

查看答案和解析>>

同步练习册答案