精英家教网 > 高中数学 > 题目详情

【题目】判断函数f(x)= 在(﹣1,+∞)上的单调性,并证明.

【答案】证明:设﹣1<x1<x2 , 则f(x1)﹣f(x2)= =
=
∵﹣1<x1<x2
∴x1﹣x2<0,x1+1>0,x2+1>0.
∴当a>0时,f(x1)﹣f(x2)<0,即f(x1)<f(x2),
∴函数y=f(x)在(﹣1,+∞)上单调递增.
同理当a<0时,f(x1)﹣f(x2)>0,即f( x1)>f(x2),
∴函数y=f(x)在(﹣1,+∞)上单调递减
【解析】设﹣1<x1<x2 , 求出f(x1)﹣f(x2)的表达式,通过讨论a的范围,从而得出函数的单调区间.
【考点精析】利用函数单调性的判断方法对题目进行判断即可得到答案,需要熟知单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求函数f(x)的解析式,并说明函数的单调性;
(2)解不等式f(2x+1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】孝感星河天街购物广场某营销部门随机抽查了100名市民在2017年国庆长假期间购物广场的消费金额,所得数据如表,已知消费金额不超过3千元与超过3千元的人数比恰为3:2.

(1)试确定 的值,并补全频率分布直方图(如图);

(2)用分层抽样的方法从消费金额在的三个群体中抽取7人进行问卷调查,则各小组应抽取几人?若从这7人中随机选取2人,则此2人来自同一群体的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+
(1)判断f(x)的奇偶性并说明理由;
(2)当a=16时,判断f(x)在x∈(0,2]上的单调性并用定义证明;
(3)试判断方程x3﹣2016x+16=0在区间(0,+∞)上解的个数并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且成等差数列,,函数

(1)求数列 的通项公式;

(2)设数列满足,记数列的前项和为,试比较 的大小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数在区间上的最小值;

(Ⅱ)证明:对任意 ,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的焦点为FA(x1y1),B(x2y2)是过F的直线与抛物线的两个交点求证:

(1)y1y2=-p2;(2)为定值;

(3)以AB为直径的圆与抛物线的准线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,则称点为平面上单调格点:设

求从区域中任取一点,而该点落在区域上的概率;

求从区域中的所有格点中任取一点,而该点是区域上的格点的概率.

查看答案和解析>>

同步练习册答案