精英家教网 > 高中数学 > 题目详情

已知椭圆的左、右焦点和短轴的两个端点构成边长为2的正方形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的直线与椭圆相交于两点.点,记直线的斜率分别为,当最大时,求直线的方程.

 

【答案】

(Ⅰ)椭圆的方程为;(Ⅱ)直线的方程为

【解析】

试题分析:(Ⅰ)由已知,椭圆的左、右焦点和短轴的两个端点构成边长为2的正方形,所以,利用,可得,又椭圆的焦点在轴上,从而得椭圆的方程;(Ⅱ)需分直线的斜率是否为0讨论.①当直线的斜率为0时,则;②当直线的斜率不为0时,设,直线的方程为,将代入,整理得.利用韦达定理列出.结合,列出关于的函数,应用均值不等式求其最值,从而得的值,最后求出直线的方程.

试题解析:(Ⅰ)由已知得(2分),又,∴椭圆方程为(4分)

(Ⅱ)①当直线的斜率为0时,则;        6分

②当直线的斜率不为0时,设,直线的方程为

代入,整理得

.      8分

所以,=

 10分.

,则

所以当且仅当,即时,取等号. 由①②得,直线的方程为.13分.

考点:1.椭圆方程的求法;2.直线和椭圆位置关系中最值问题;3.均值不等式.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系xOy中,已知椭圆C:
y2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足
PA
AB
=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年贵州省高三第一次月考文科数学 题型:解答题

(本小题满分12分)已知椭圆的方程为 ,双曲线的左、右焦

 

点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点.

(1)求双曲线的方程;                                             

(2)若直线与双曲线C2恒有两个不同的交点A和B,求的范围。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

同步练习册答案