精英家教网 > 高中数学 > 题目详情

【题目】在椭圆上任取一点不为长轴端点),连结,并延长与椭圆分别交于点两点,已知的周长为8面积的最大值为.

1)求椭圆的方程;

2)设坐标原点为,当不是椭圆的顶点时,直线和直线的斜率之积是否为定值?若是定值,请求出这个定值;若不是定值,请说明理由.

【答案】1;(2)是定值,值为.

【解析】

(1)根据椭圆的定义,结合的周长为8,求出的值,设出点的坐标,结合三角形面积公式,椭圆的范围,面积的最大值为.可以求出的关系,进而求出的值,最后求出椭圆的方程;

(2)设出直线的方程与椭圆方程联立,利用解方程组,求出点坐标,同理求出的坐标,最后通过斜率公式,计算出直线和直线的斜率之积是定值.

(1)因为的周长为8,所以有

,因为面积的最大值为.所以的最大值为,由椭圆的范围,当时,面积最大,因此有,而,因为,所以,所以椭圆标准方程为:

2)当不是椭圆的顶点时,因此.

直线的方程为:,与椭圆的方程联立,得:

同理直线的方程为:,与椭圆的方程联立,得:

为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形是某生态农庄的一块植物栽培基地的平面图,现欲修一条笔直的小路(宽度不计)经过该矩形区域,其中都在矩形的边界上.已知(单位:百米),小路将矩形分成面积分别为(单位:平方百米)的两部分,其中,且点在面积为的区域内,记小路的长为百米.

1)若,求的最大值;

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年上半年我国多个省市暴发了非洲猪瘟疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就一天中一头猪的平均成本与生猪存栏数量之间的关系进行研究.现相关数据统计如下表:

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究员甲根据以上数据认为具有线性回归关系,请帮他求出关于的线.性回归方程(保留小数点后两位有效数字)

2)研究员乙根据以上数据得出的回归模型:.为了评价两种模型的拟合效果,请完成以下任务:

①完成下表(计算结果精确到0.01元)(备注:称为相应于点的残差);

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估计值

残差

模型乙

估计值

3.2

2.4

2

1.76

1.4

残差

0

0

0

0.14

0.1

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)

参考公式:.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查中学生每天玩游戏的时间是否与性别有关,随机抽取了男、女学生各50人进行调查,根据其日均玩游戏的时间绘制了如下的频率分布直方图.

1)求所调查学生日均玩游戏时间在分钟的人数;

2)将日均玩游戏时间不低于60分钟的学生称为“游戏迷”,已知“游戏迷”中女生有6人;

①根据已知条件,完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别关系;

非游戏迷

游戏迷

合计

合计

②在所抽取的“游戏迷”中按照分层抽样的方法抽取10人,再在这10人中任取9人进行心理干预,求这9人中男生全被抽中的概率.

附:(其中为样本容量).

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点的坐标分别为,且所在直线的斜率之积等于,记顶点的轨迹为.

Ⅰ)求顶点的轨迹的方程;

Ⅱ)若直线与曲线交于两点,点在曲线上,且的重心(为坐标原点),求证:的面积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是常数,且),曲线处的切线方程为.

1)求的值;

2)若存在(其中是自然对数的底),使得成立,求的取值范围;

3)设,若对任意,均存在,使得方程有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,为等比数列,公比为..

1)若.

①当,求数列的通项公式;

②设,试比较的大小?并证明你的结论.

2)问集合中最多有多少个元素?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为3的正方形ABCD中,点EF分别在边ABBC(如图1),且BE=BF,将△AED,△DCF分别沿DEDF折起,使AC两点重合于点A′(如图2).

1)求证ADEF

2BFBC时,求点A到平面DEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,两两垂直,四边形是边长为2的正方形,,且.

1)证明:平面平面

2)求点到平面的距离.

查看答案和解析>>

同步练习册答案