精英家教网 > 高中数学 > 题目详情

是否存在一等差数列,使SnS2n是一个与n无关的常数?证明你的结论.

答案:
解析:


提示:

  [提示]如果这样的等差数列存在,设其首项为a1,公差为d,再将用a1和d表示,通过化简,得到其结果确与n无关就可以了.

  [说明](1)等差数列问题的研究中,定义和公式是依据和基础,学习中一定要注意牢记定义和公式,深刻地认识和了解定义和公式,掌握其应用.

  (2)多项式恒等,则对应项系数相等.利用这一性质,通过比较对应项的系数建立方程组,从而求出待定系数的值,这就是待定系数法,其应用相当广泛.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列an的前n项和为Sn,Sn=2an-3n(n∈N*).
(Ⅰ)证明数列an+3是等比数列,求出数列an的通项公式;
(Ⅱ)设bn=
n3
an
,求数列bn的前n项和Tn
(Ⅲ)判断数列an中是否存在构成等差数列的三项?若存在,求出一组符合条件的项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项的和为Sn,公比为q(q≠1).
(1)若S4,S12,S8成等差数列,求证:a10,a18,a14成等差数列;
(2)若Sm,Sk,St(m,k,t为互不相等的正整数)成等差数列,试问数列{an}中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;
(3)若q为大于1的正整数.试问{an}中是否存在一项ak,使得ak恰好可以表示为该数列中连续两项的和?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列是以d为公差的等差数列,数列是以q为公比的等比数列.
(1)若数列的前n项和为Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的约数),求证:数列中每一项都是数列中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn(n∈N*),点(an,Sn)在直线y=2x-3n上.
(Ⅰ)求证:数列{an+3}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)数列{an}中是否存在成等差数列的三项?若存在,求出一组合适条件的三项;若不存在,说明理由.

查看答案和解析>>

同步练习册答案