11£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=2cos¦È£¬ÈôÒÔ¼«µãΪƽÃæÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖᣬÇÒÈ¡ÏàͬµÄµ¥Î»³¤¶È½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÔòÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÓëÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÉèµãP£¨m£¬0£©£¬ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÇÒ|PA|•|PB|=1£¬Çó·Ç¸ºÊµÊýmµÄÖµ£®

·ÖÎö £¨1£©ÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬x2+y2=¦Ñ2£¬¿ÉµÃÇúÏßCµÄÆÕͨ·½³Ì£»ÔËÓôúÈë·¨£¬¿ÉµÃÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßµÄÆÕͨ·½³Ì£¬ÔËÓÃÅбðʽ´óÓÚ0£¬Î¤´ï¶¨Àí£¬½áºÏ²ÎÊýµÄ¼¸ºÎÒâÒ壬½â·½³Ì£¬¼´¿ÉµÃµ½ËùÇómµÄÖµ£®

½â´ð ½â£º£¨1£©ÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬x2+y2=¦Ñ2£¬
ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=2cos¦È£¬¼´Îª¦Ñ2=2¦Ñcos¦È£¬
¼´ÓÐx2+y2=2x£¬¼´Ô²£¨x-1£©2+y2=1£»
Ó´Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¿ÉµÃx-$\sqrt{3}$y-m=0£®
£¨2£©½«$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$´úÈëÔ²£¨x-1£©2+y2=1£¬
¿ÉµÃt2+$\sqrt{3}$£¨m-1£©t+m2-m=0£¬
ÓÉ¡÷=3£¨m-1£©2-4£¨m2-m£©£¾0£¬¿ÉµÃ-1£¼m£¼3£¬
ÓÉmΪ·Ç¸ºÊý£¬¿ÉµÃ0¡Üm£¼3£®
Éèt1£¬t2ÊÇ·½³ÌµÄÁ½¸ù£¬¿ÉµÃt1t2=m2-m£¬
|PA|•|PB|=1£¬¿ÉµÃ|m2-m|=1£¬
½âµÃm=1»ò1¡À$\sqrt{2}$£¬
ÓÉ0¡Üm£¼3£®¿ÉµÃm=1»ò1+$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²é¼«×ø±êϵ·½³Ì¡¢²ÎÊý·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éÖ±Ïß²ÎÊý·½³ÌµÄÔËÓã¬Ö÷ÒªÊDzÎÊýµÄ¼¸ºÎÒâÒ壬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÉèP£º¡°¹ØÓÚxµÄ²»µÈʽ${x^2}-ax+a+\frac{5}{4}£¾0$µÄ½â¼¯ÎªR¡±£¬q£º¡°·½³Ì$\frac{x^2}{4a+7}+\frac{y^2}{a-3}=1$±íʾ˫ÇúÏß¡±£®
£¨1£©ÈôqΪÕ棬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨2£©Èôp¡ÄqΪ¼Ù£¬p¡ÅqΪÕ棬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÈôÖ±Ïßax+£¨2a-3£©y=0µÄÇãб½ÇΪ45¡ã£¬Ôòa=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ËÕ¹û³¬ÊÐÌض¨ÔÚ2017ÄêÔªµ©ÆÚ¼ä¾ÙÐÐÌØ´óÓŻݻ£¬·²¹ºÂòÉÌÆ·´ïµ½88ÔªÕߣ¬¿É»ñµÃÒ»´Î³é½±»ú»á£¬ÒÑÖª³é½±¹¤¾ßÊÇÒ»¸öÔ²ÃæתÅÌ£¬±»·Ö³É6¸öÉÈÐο飬·Ö±ð¼ÇΪ1£¬2£¬3£¬4£¬5£¬6£¬ÇÒÆäÃæ»ýÒÀ´Î³É¹«±ÈΪ3µÄµÈ±ÈÊýÁУ¬Ö¸Õë¼ýÍ·Ö¸ÔÚ×îС1ÇøÓòÄÚʱ£¬¾ÍÖС°Ò»µÈ½±¡±£¬ÔòÏû·Ñ´ïµ½88ÔªÕßûÓгéÖÐÒ»µÈ½±µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{364}$B£®$\frac{1}{121}$C£®$\frac{120}{121}$D£®$\frac{363}{364}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª¶¨ÒåÔÚRÉϺ¯Êýf£¨x£©Âú×ãf£¨-x£©+f£¨x£©=0£¬ÇÒµ±x£¾0ʱ£¬f£¨x£©=1+ax£¬Èôf£¨-1£©=-$\frac{3}{2}$£¬ÔòʵÊýa=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=cosx+$\sqrt{3}$sinx£¬Ôò$f'£¨\frac{¦Ð}{3}£©$µÄֵΪ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÈýÀâ׶P-ABCÖУ¬AP=AB£¬Æ½ÃæPAB¡ÍƽÃæABC£¬¡ÏABC=90¡ã£¬D£¬E·Ö±ðΪPB£¬BCµÄÖе㣮
£¨1£©ÇóÖ¤£ºDE¡ÎƽÃæPAC£»
£¨2£©ÇóÖ¤£ºDE¡ÍAD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ¡÷ABC£¬µãDÊÇBCÖе㣬$\overrightarrow{AF}$=2$\overrightarrow{FB}$£¬CFºÍAD½»ÓÚµãE£¬Éè$\overrightarrow{AD}$=a£¬$\overrightarrow{AB}$=b£®
£¨1£©ÒÔa£¬bΪ»ùµ×±íʾÏòÁ¿$\overrightarrow{AC}$£¬$\overrightarrow{FC}$£®
£¨2£©Èô$\overrightarrow{AE}$=¦Ë$\overrightarrow{AD}$£¬ÇóʵÊý¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®º¯Êýf£¨x£©=$\sqrt{2}$sin£¨$\frac{x}{2}$+$\frac{¦Ð}{3}$£©£¨x¡ÊR£©µÄ×îСÕýÖÜÆÚÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{2}$B£®¦ÐC£®2¦ÐD£®4¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸