精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中为常数).

1)若上单调递增,求实数的取值范围;

2)若上的最大值为,求的值.

【答案】1;(2

【解析】

1)对函数进行求导,再利用参变分离,将问题转化为恒成立问题;

2)对函数进行求导得,再对分成三种情况,即进行分类讨论,分别求出最大值,进而得到的值.

1)由可得

上单调递增可得上恒成立,

,由可得

故只需,即实数的取值范围是.

2)由(1)可知

①当,即时,(12)上恒成立,

(12)上单调递增,则[12]上的最大值为

,满足

②当,即时,(12)上恒成立,

(12)上单调递减,则[12]上的最大值为

,不满足,舍去;

③当,即时,由可得.

时,;当时,

上单调递增,在上单调递减,

的最大值为,即

所以,,不满足,舍去.

综上可知,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求的极坐标方程;

2)将曲线上所有点的横坐标不变,纵坐标缩短到原来的倍,得到曲线,若的交点为(异于坐标原点),的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若在两个成语中,一个成语的末字恰是另一成语的首字,则称这两个成语有顶真关系,现从分别贴有成语人定胜天争先恐后一马当先天马行空先发制人5张大小形状完全相同卡片中,任意抽取2张,则这2张卡片上的成语有顶真关系的概率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为(其中为参数),以原点为极点,以轴为极轴建立极坐标系,曲线的极坐标方程为为常数,且),直线与曲线交于两点.

1)若,求实数的值;

2)若点的直角坐标为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016520日以来,广东自西北到东南出现了一次明显降雨.为了对某地的降雨情况进行统计,气象部门对当地20~289天记录了其中100小时的降雨情况,得到每小时降雨情况的频率分布直方图如下:

若根据往年防汛经验,每小时降雨量在时,要保持二级警戒,每小时降雨量在时,要保持一级警戒.

1)若从记录的这100小时中按照警戒级别采用分层抽样的方法抽取10小时进行深度分析.

①求一级警戒和二级警戒各抽取多少小时;

②若从这10个小时中任选2个小时,则这2个小时中恰好有1小时属于一级警戒的概率.2)若以每组的中点代表该组数据值,求这100小时内的平均降雨量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是梯形,四边形是矩形,且平面平面的中点.

1)证明:平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,椭圆上动点到点的最远距离和最近距离分别为.

1)求椭圆的方程;

2)设分别为椭圆的左、右顶点,过点且斜率为的直线与椭圆交于两点,若为坐标原点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三共有1000位学生,为了分析某次的数学考试成绩,采取随机抽样的方法抽取了50位高三学生的成绩进行统计分析,得到如图所示频数分布表:

分组

频数

3

11

18

12

6

(1)根据频数分布表计算成绩在的频率并计算这组数据的平均值(同组的数据用该组区间的中点值代替);

(2)用分层抽样的方法从成绩在的学生中共抽取5人,从这5人中任取2人,求成绩在中各有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.

学生序号

1

2

3

4

5

6

7

8

9

10

立定跳远(单位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳绳(单位:次)

63

a

75

60

63

72

70

a1

b

65

在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则

A2号学生进入30秒跳绳决赛

B5号学生进入30秒跳绳决赛

C8号学生进入30秒跳绳决赛

D9号学生进入30秒跳绳决赛

查看答案和解析>>

同步练习册答案