【题目】在直角坐标系xOy中,曲线C1: (t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2 cosθ.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.
【答案】
(1)解:由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,
∴x2+y2=2y.
同理由C3:ρ=2 cosθ.可得直角坐标方程: ,
联立 ,
解得 , ,
∴C2与C3交点的直角坐标为(0,0),
(2)解:曲线C1: (t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,其极坐标方程为:θ=α(ρ∈R,ρ≠0),
∵A,B都在C1上,
∴A(2sinα,α),B .
∴|AB|= =4 ,
当 时,|AB|取得最大值4
【解析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把 代入可得直角坐标方程.同理由C3:ρ=2 cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|= 即可得出.
科目:高中数学 来源: 题型:
【题目】设f(x)=sinxcosx﹣cos2(x+ ). (Ⅰ)求f(x)的单调区间;
(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f( )=0,a=1,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 (且)是定义域为R的奇函数.
(Ⅰ)求t的值;
(Ⅱ)若函数的图象过点,是否存在正数m,使函数在上的最大值为0,若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是的⊙O直径,CB与⊙O相切于B,E为线段CB上一点,连接AC、AE分别交⊙O于D、G两点,连接DG交CB于点F. (Ⅰ)求证:C、D、G、E四点共圆.
(Ⅱ)若F为EB的三等分点且靠近E,EG=1,GA=3,求线段CE的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知奇函数f(x)在(﹣∞,0)上单调递减,且f(2)=0,则不等式(x﹣1)f(x﹣1)>0的解集是( )
A.(﹣3,﹣1)
B.(﹣1,1)∪(1,3)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,1)∪(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.那么在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )
A. 48 B. 36 C. 24 D. 18
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com