精英家教网 > 高中数学 > 题目详情
精英家教网已知椭圆
x2
a2
+
y2
b2
=1
 (a>b>0)的离心率e=
6
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求椭圆的方程;
(2)设F1、F2为椭圆的左、右焦点,过F2作直线交椭圆于P、Q两点,求△PQF1的内切圆半径r的最大值.
分析:(1)设出直线的方程,利用直线的截距式写出直线的方程,利用点到直线的距离公式列出关于a,b,c的等式,再利用椭圆的离心率公式得到关于a,b,c的方程组,求出a,b,c的值即得到椭圆的方程.
(2)设出直线方程,将直线方程与椭圆方程联立,利用韦达定理得到关于交点坐标的关系,写出△PQF1的面积并求出最大值,再将面积用外接圆的半径表示,求出半径的最大值.
解答:解:(1)直线AB 的方程为
x
a
-
y
b
=1
即bx-ay-ab=0
由题意得
ab
a2+b2
=1

c
a
=
6
3

a2=b2+c2
解得a=
3
,b=1

∴椭圆的方程为
x2
3
+y2=1

(2)设PQ:x=ty+
2
代入
x2
3
+y2=1

并整理得(t2+3)y2+2
2
ty-1=0

△=(2
2
t)
2
+4(t2+3)>0

设P(x1,y1),Q(x2,y2)则
y1+y2=-
2
2
t
t2+3
y1y2=-
1
t2+3

|y1-y2|=
(y1+y2)2-4y1y2

=
(-
2
2
t
t2+3
)
2
+
4
t2+3

=2
3
-(
1
t2+3
-
1
4
)
2
+
1
8

1
t2+3
=
1
4
即t2=1时,|y1-y2|max=
6
2

S△PQF1=
1
2
|F1F2||y1y2|≤
1
2
•2
2
6
2
=
3

又∴S△PQF1=
1
2
(|PF1 | +|QF1|+|PQ|)r=
1
2
•4
3
r=2
3
r

rmax=
3
2
3
=
1
2
点评:求圆锥曲线的方程的一般方法是利用待定系数法;解决直线与圆锥曲线的位置关系一般是将直线的方程与圆锥曲线的方程联立,消去一个未知数得到关于一个未知数的二次方程,利用韦达定理找突破口.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案