【题目】近期中央电视台播出的《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:
组号 | 分组 | 频数 | 频率 |
第1组 | |||
第2组 | ① | ||
第3组 | 20 | ② | |
第4组 | 20 | ||
第5组 | 10 | ||
合计 | 100> |
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示);
(2)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3、4、5组中用分层抽样抽取5名选手进入第二轮面试,求第3、4、5组每组各抽取多少名选手进入第二轮面试;
(3)在(2)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官进行面试,求:第4组至少有一名选手被考官面试的概率.
【答案】(1)见解析;(2)第3、4、5组分别抽取2人、2人、1人进入第二轮面试;(3).
【解析】试题分析:(1)由频率的意义可知,每小组的频率=频数/总人数,
由此计算填表中空格;
(2)先算出第3、4、5组每组选手数,分层抽样得按比例确定每小组抽取个体的个数,求得第3、4、5组每组各抽取多少名选手进入第二轮面试.
(3)根据概率公式计算,事件“5名选手中抽2名选手”有10种可能,而且这些事件的可能性相同,设第3组的2位选手为, ,第4组的2位选手为, ,第5组的1位选手为其中事件“第4组的2位选手, 中至少有一位选手入选”可能种数是7,那么即可求得事件A的概率.
试题解析:
(1)第1组的频数为人,所以①处应填的数为人,从而第2组的频率为,因此②处应填的数为,
频率分布直方图如图所示,
(2)因为第3、4、5组共有50名选手,所以利用分层抽样在50名选手中抽取5名选手进入第二轮面试,每组抽取的人数分别为:
第3组: 人,第4组: 人,第5组: 人,所以第3、4、5组分别抽取2人、2人、1人进入第二轮面试.
(3)设第3组的2位选手为, ,第4组的2位选手为, ,第5组的1位选手为,则从这五位选手中抽取两位选手有, , , , , , , , , ,共10种.
其中第4组的2位选手, 中至少有一位选手入选的有: , , , , , , ,共有7种,所以第4组至少有一名选手被考官面试的概率为.
科目:高中数学 来源: 题型:
【题目】某成衣批发店为了对一款成衣进行合理定价,将该款成衣按事先拟定的价格进行试销,得到了如下数据:
批发单价x(元) | 80 | 82 | 84 | 86 | 88 | 90 |
销售量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程 ,其中
(2)预测批发单价定为85元时,销售量大概是多少件?
(3)假设在今后的销售中,销售量与批发单价仍然服从(1)中的关系,且该款成衣的成本价为40元/件,为使该成衣批发店在该款成衣上获得更大利润,该款成衣单价大约定为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据:
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)求y关于x的线性回归方程;(已知 )
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低了多少吨标准煤.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.
(1)求甲、乙两家公司共答对道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为2的菱形ABCD中,∠A=60°,E、F分别是BC,DC的中点,G为 BF、DE的交点,若 =
(1)试用 , 表示 , , ;
(2)求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如表数据:
单价x(元) | 18 | 19 | 20 | 21 | 22 |
销量y(册) | 61 | 56 | 50 | 48 | 45 |
(1)求试销5天的销量的方差和y对x的回归直线方程;
(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,
为了获得最大利润,该单元卷的单价应定为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣lnx.
(1)求曲线f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调递减区间:
(3)设函数g(x)=f(x)﹣x2+ax,a>0,若x∈(O,e]时,g(x)的最小值是3,求实数a的值.(e为自然对数的底数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com