精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1D与D1C所成的角为(
A.30°
B.45°
C.60°
D.90°

【答案】C
【解析】解:在正方体ABCD﹣A1B1C1D1中, ∵D1C∥A1B,
∴∠DA1B是异面直线A1D与D1C所成的角,
∵A1D=A1B=BD,
∴△A1BD是等边三角形,
∴∠DA1B=60°,
∴异面直线A1D与D1C所成的角是60°.
故选:C.
【考点精析】通过灵活运用异面直线及其所成的角,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】空间四边形ABCD中,AD=BC=2,E、F分别是AB、CD的中点,若EF= , 则AD与BC所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点(1,3),并且g(x)=xf(x)是偶函数.
(1)求实数a、b的值;
(2)用定义证明:函数g(x)在区间(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(Ⅰ)求函数的单调区间;

(Ⅱ)记过函数两个极值点的直线的斜率为,问函数是否存在零点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P—ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD//BC,且BC⊥PB,△PAB是等边三角形,DA=AB=2,BC=AD,E是线段AB的中点.

(I)求证:PE⊥CD;

(II)求PC与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:
(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)求PB和平面PAD所成的角的大小;
(2)证明AE⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=bax(a>0,且a≠1,b∈R)的图象经过点A(1,6),B(3,24).
(1)设g(x)= ,确定函数g(x)的奇偶性;
(2)若对任意x∈(﹣∞,1],不等式( x≥2m+1恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案