【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E是PD的中点.
(1)证明:PB∥平面AEC;
(2)设AP=1,AD= ,三棱锥P﹣ABD的体积V= ,求A到平面PBC的距离.
(3)在(2)的条件下求直线AP与平面PBC所成角的正弦值.
【答案】
(1)证明:设BD和AC交于点O,连接EO.
∵ABCD为矩形,∴O为BD的中点.
又∵E为PD的中点,∴EO∥PB
∵EO平面AEC,PB平面AEC,
∴PB∥平面AEC.
(2)解:VP﹣ABD= PAABAD= AB.由V= ,可得AB=
作AH⊥PB交PB于H.
由BC⊥AB,BC⊥PA,知BC⊥平面PAB.
∴BC⊥AH,故AH⊥平面PBC.
又AH= = .
∴A到平面PBC的距离为 .
(3)解:由(2)可知:AH⊥平面PBC.
∴∠APH为直线AP与平面PBC所成角
在Rt△APH中,AH= ,AP=1,
∴sin∠APH= = .
∴直线AP与平面PBC所成角的正弦值为 .
【解析】(1)设BD和AC交于点O,连接EO.运用三角形的中位线定理和线面平行的判定定理,即可得证;(2)运用棱锥的体积公式,求得AB,作AH⊥PB交PB于H,证得AH⊥平面PBC,运用直角三角形PAB中面积相等,可得AH的长,即为所求;(3)推得∠APH为直线AP与平面PBC所成角,在Rt△APH中,运用正弦函数的定义,计算即可得到所求值.
【考点精析】解答此题的关键在于理解空间角的异面直线所成的角的相关知识,掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则.
科目:高中数学 来源: 题型:
【题目】对于区间,若函数同时满足:①在上是单调函数;②函数, 的值域是,则称区间为函数的“保值”区间.
()求函数的所有“保值”区间.
()函数是否存在“保值”区间?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=aln(x+1)﹣x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式 恒成立,则实数a的取值范围为( )
A.[15,+∞)
B.
C.[1,+∞)
D.[6,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知U={y|y=log2x,x>1},P={y|y= ,x>2},则UP=( )
A.[ ,+∞)
B.(0, )
C.(0,+∞)
D.(﹣∞,0)∪( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的两顶点坐标A(﹣1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.
(I)求曲线M的方程;
(Ⅱ)设直线BC与曲线M的另一交点为D,当点A在以线段CD为直径的圆上时,求直线BC的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①定义在R上的函数f(x)满足f(2)>f(1),则f(x)一定不是R上的减函数;
②用反证法证明命题“若实数a,b,满足a2+b2=0,则a,b都为0”时,“假设命题的结论不成立”的叙述是“假设a,b都不为0”.
③把函数y=sin(2x+ )的图象向右平移 个单位长度,所得到的图象的函数解析式为y=sin2x.
④“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充分不必要条件.
其中所有正确命题的序号为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com