精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
已知椭圆经过点,离心率为,动点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程;
(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知为双曲线的右焦点,为双曲线右支上一点,
且位于轴上方,为直线上一点,为坐标原点,已知
,则双曲线的离心率为                                         
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个顶点为(-2,0),焦点在x轴上,且离心率为.
(1)求椭圆的标准方程.
(2)斜率为1的直线L与椭圆交于A、B两点,O为原点,当△AOB的面积为时,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)椭圆的左、右焦点分别为,过的直线 与椭圆交于两点。
(Ⅰ)若点在圆为椭圆的半焦距)上,且,求椭圆的离心率;
  (Ⅱ)若函数的图象,无论为何值时恒过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知点P(4,4),圆C与椭圆E:
有一个公共点A(3,1),F1F2分别是椭圆的左.右焦点,直线PF1与圆C相切.

(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在直角坐标系中,椭圆的左、右焦点分别为. 其中也是抛物线的焦点,点在第一象限的交点,且
(Ⅰ)求的方程;
(Ⅱ)若过点的直线交于不同的两点.之间,试求面积之比的取值范围.(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2;且
在椭圆C上.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A、B两点,且△AF2B的面积为,求以F2为圆
心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
已知F1、F2分别是椭圆的左、右焦点,曲线C是坐标原点为顶点,以F2为焦点的抛物线,过点F1的直线交曲线C于x轴上方两个不同点P、Q,点P关于x轴的对称点为M,设
(I)求,求直线的斜率k的取值范围;
(II)求证:直线MQ过定点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.椭圆与直线交于两点,且,其
为坐标原点。
1)求的值;
2)若椭圆的离心率满足,求椭圆长轴的取值范围。

查看答案和解析>>

同步练习册答案