精英家教网 > 高中数学 > 题目详情
设曲线y=
2-cosx
sinx
在点(
π
2
,2)
处的切线与直线x+ay+1=0垂直,则a=
1
1
分析:求出函数y=
2-cosx
sinx
在点(
π
2
,2)
处的导数,即为曲线在此点的切线斜率,再利用两直线垂直的性质求出a.
解答:解:y=
2-cosx
sinx
 的导数为 y′=
sinx•sinx -(2-cosx)cosx
sin2x

当x=
π
2
时,y′=1,
故y=
2-cosx
sinx
在点(
π
2
,2)处的切线斜率为1,
故与它垂直的直线 x+ay+1=0 的斜率为-
1
a
=-1,
∴a=1,
故答案为:1.
点评:本题考查函数在某点的导数就是函数在此点的切线斜率,以及两直线垂直的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=ex(ax2+x+1),且曲线y=f(x)在x=1处的切线与x轴平行.
(1)求a的值,并讨论f(x)的单调性;
(2)证明:当θ∈[0,
π2
]时,|f(cosθ)-f(sinθ)|<2

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系、设曲线C参数方程为
x=
3
cosθ
y= sinθ
(θ为参数),直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)设P(x,y) 是曲线C:
x=-2+cosθ
y=sinθ
(θ为参数)上任意一点,则
y
x
的取值范围是
[-
3
3
3
3
]
[-
3
3
3
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:只能从下列A、B、C三题中选做一题,如果多做,则按第一题评阅记分)
A.(坐标系与参数方程选做题)曲线
x=cosα
y=1+sinα
(α为参数)与曲线ρ2-2ρcosθ=0的交点个数为
2
2

B.(不等式选讲选做题)设函数f(x)=
|x+1|+|x-2|-a
,若函数f(x)的定义域为R,则实数a的取值范围是
(-∞,3]
(-∞,3]

C.(几何证明选讲选做题)如图,从圆O外一点A引圆的切线AD和割线ABC,已知AC=6,圆O的半径为3,圆心O到AC的距离为
5
,则AD=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)(1)(坐标系与参数方程选做题)已知曲线C1、C2的极坐标方程分别为ρ=-2cos(θ+
π
2
)
2
ρcos(θ-
π
4
)+1=0
,则曲线C1上的点与曲线C2上的点的最远距离为
2
+1
2
+1

(2)(不等式选择题)设a=
x2-xy+y2
,b=p
xy
,c=x+y,若对任意的正实数x,y,都存在以a,b,c为三边长的三角形,则实数P的取值范围是
(1,3)
(1,3)

查看答案和解析>>

同步练习册答案