精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PD垂直于底面ABCDAD=PDE分别为AP的中点.

(Ⅰ)求证:DE垂直于平面PAB

(Ⅱ)设BC =AB=2,求直线EB与平面ABD所成的角的大小.

【答案】(1)见解析;(2).

【解析】试题分析:(1)易证得DEAPABDE,进而可证得DE垂直于平面PAB;

(2)在面APD内,过EEHADADH,连接BH,∠EBH就是直线EB与平面ABD所成的角,进而可得解.

试题解析:

(1)∵PD垂直于底面ABCD

∴ABPD

又∵底面ABCD为矩形

∴ABAD

∴ABAPD

DEAPD

∴ABDE

又∵EAP的中点,AD=PD

∴DEAP

∴DE垂直于平面PAB

(2)在面APD内,过EEHADADH,连接BH,∠EBH就是直线EB与平面ABD所成的角

BC =,AB=2,AD=PD,EAP的中点

BE=,EH=

sinEBH=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列五个正方体图形中,是正方体的一条对角线,点MNP分别为其所在棱的中点,求能得出MNP的图形的序号(写出所有符合要求的图形序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,其中a>0,且函数f(x)的最大值是
(1)求实数a的值;
(2)若函数g(x)=lnf(x)﹣b有两个零点,求实数b的取值范围;
(3)若对任意的x∈(0,2),都有f(x)< 成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)= (a∈R)是奇函数,函数g(x)= 的定义域为(﹣1,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣1,+∞)上递减,根据单调性的定义求实数m的取值范围;
(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(﹣1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一列火车从重庆驶往北京,沿途有n个车站(包括起点站重庆和终点站北京).车上有一邮政车厢,每停靠一站便要卸下火车已经过的各站发往该站的邮袋各1个,同时又要装上该站发往以后各站的邮袋各1个,设从第k站出发时,邮政车厢内共有邮袋ak个(k=1,2,…,n).
(1)求数列{ak}的通项公式;
(2)当k为何值时,ak的值最大,求出ak的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为奇函数,当x≥0时,f(x)= .g(x)=
(1)求当x<0时,函数f(x)的解析式;
(2)求g(x)的解析式,并证明g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是奇函数,且f(2)=﹣
(1)求函数f(x)的解析式
(2)判断函数f(x)在(0,1)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.

(Ⅰ)求分数在[50,60)的频率及全班人数;

(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;

(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面积;
(2)若BC=2 ,求AB的长.

查看答案和解析>>

同步练习册答案