精英家教网 > 高中数学 > 题目详情
2.已知椭圆C的中心在原点,对称轴为坐标轴,左焦点为F1(-1,0),离心率为$\frac{1}{2}$.
(1)求椭圆C标准方程;
(2)分别以椭圆C的四个顶点作坐标轴的垂线,围成如图所示的矩形,A,B是所围成的矩形在x上方的两个顶点,若P,Q是椭圆C上两个动点,直线OP,OQ与椭圆的另外交点分别为P1,Q1,且直线OP,OQ的斜率之积等于直线OA,OB的斜率之积,试求四边形PQP1Q1的面积是否为定值,并说明理由.

分析 (1)由已知可得c,再由离心率求得a,结合隐含条件求得b,则椭圆方程可求;
(2)设P(x1,y1),Q(x2,y2),通过斜率计算可得${{x}_{1}}^{2}+{{x}_{2}}^{2}=4$,分x1=x2、x1≠x2两种情况讨论,利用点到直线的距离公式、三角形面积公式计算即得结论.

解答 解:(1)由题意,c=1,又e=$\frac{c}{a}=\frac{1}{2}$,∴a=2.
则b2=a2-c2=4-1=3.
∴椭圆C的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)结论:四边形PQP1Q1的面积为定值4$\sqrt{3}$.
理由如下:
由题意得:四条垂线的方程为:x=±2,y=±$\sqrt{3}$,
则A(2,$\sqrt{3}$),B(-2,$\sqrt{3}$),
∴kOA•kOB=-$\frac{3}{4}$.
设P(x1,y1),Q(x2,y2),则$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{3}{4}$(*)
PQ=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$.
∵点P、Q在椭圆C上,∴${{y}_{1}}^{2}=3(1-\frac{{{x}_{1}}^{2}}{4})$,${{y}_{2}}^{2}=3(1-\frac{{{x}_{2}}^{2}}{4})$,
将(*)式平方得:9x12x22=16y12y22=9(4-x12)(4-x22),即x12+x22=4,
①若x1=x2,则P、P1、Q、Q2分别是直线OA、OB与椭圆的交点,
∴四个点的坐标为:($\sqrt{2}$,$\frac{\sqrt{6}}{2}$),($\sqrt{2}$,-$\frac{\sqrt{6}}{2}$),(-$\sqrt{2}$,$\frac{\sqrt{6}}{2}$),(-$\sqrt{2}$,-$\frac{\sqrt{6}}{2}$),
∴四边形PQP1Q1的面积为4$\sqrt{3}$;
②若x1≠x2,则直线PQ的方程可设为:y-y1=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$(x-x1),
化简得:(y2-y1)x-(x2-x1)y+x2y1-x1y2=0,
∴点O到直线PQ的距离为d=$\frac{|{x}_{1}{y}_{2}-{x}_{2}{y}_{1}|}{\sqrt{({x}_{2}-{x}_{1})^{2}+({y}_{2}-{y}_{1})^{2}}}$,
∴△OPQ的面积S=$\frac{1}{2}$PQ•d=$\frac{1}{2}$|x1y2-x2y1|
=$\frac{1}{2}$$\sqrt{{{x}_{1}}^{2}{{y}_{2}}^{2}-2{x}_{1}{x}_{2}{y}_{1}{y}_{2}+{{x}_{2}}^{2}{{y}_{1}}^{2}}$=$\frac{1}{2}$$\sqrt{3{{x}_{1}}^{2}(1-\frac{{{x}_{2}}^{2}}{4})+\frac{3}{2}{{x}_{1}}^{2}{{x}_{2}}^{2}+3{{x}_{2}}^{2}(1-\frac{{{x}_{1}}^{2}}{4})}$
=$\frac{1}{2}\sqrt{3({{x}_{1}}^{2}+{{x}_{2}}^{2})}$=$\frac{1}{2}\sqrt{3×4}=\sqrt{3}$.
根据椭圆的对称性,故四边形PQP1Q1的面积为4S,即为定值4$\sqrt{3}$.
综上:四边形PQP1Q1的面积为定值4$\sqrt{3}$.

点评 本题是一道直线与圆锥曲线的综合题,考查椭圆的标准方程、点的坐标、点到直线的距离、三角形面积公式,韦达定理等基础知识,考查分类讨论的思想,考查运算求解能力,注意解题方法的积累,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足${a_1}=\frac{1}{3}$,${a_{n+1}}=\frac{a_n}{{2{a_n}+1}},n∈{N^*}$
(1)求a2,a3,a4
(2)是否存在正整数p,q使得对任意的n∈N*都有${a_n}=\frac{1}{pn+q}$,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=xex,则函数f(x)的单调递增区间为(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.点M到点F(2,0)的距离比它到直线x=-3的距离小1,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.($\frac{4}{x}$)′=-$\frac{4}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{\begin{array}{l}sin(πx)(x∈[{-2,0}])\\{3^{-x}}+1\;(x>0)\end{array}\right.$,则y=f[f(x)]-4的零点为(  )
A.$-\frac{π}{2}$B.$\frac{1}{2}$C.$-\frac{3}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*
(1)证明数列{an-2n}是等差数列,并求{an}的通项公式
(2)设bn=$\frac{{a}_{n}}{{2}^{n}}$-1,求bn的前n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.化简${|{-0.01}|^2}-{({-\frac{5}{8}})^0}-{3^{{{log}_3}2}}+{({lg2})^2}+lg2lg5+lg5$的结果为-1.9999.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)是R上的可导函数,且f′(x)≥-f(x),f(0)=1,f(2)=$\frac{1}{{e}^{2}}$.则f(1)的值为$\frac{1}{e}$.

查看答案和解析>>

同步练习册答案