精英家教网 > 高中数学 > 题目详情

【题目】对于棱长为的正方体,有如下结论,其中错误的是(

A. 以正方体的顶点为顶点的几何体可以是每个面都为直角三角形的四面体;

B. 过点作平面的垂线,垂足为点,则三点共线;

C. 过正方体中心的截面图形不可能是正六边形;

D. 三棱锥与正方体的体积之比为

【答案】C

【解析】

在正方体中可找到四面体各个面都是直角三角形,排除;利用线面垂直判定定理可证出平面,从而可知三点共线,排除;在图形中可找到截面图形为正六边形的情况,可知结果为;利用切割的方法求得,从而可求得所求体积之比,排除.

在如下图所示的正方体中:

四面体的四个面均为直角三角形,可知正确;

平面

,即

平面,即过作平面的垂线即为

三点共线,可知正确;

为所在棱的中点,连接后可知六边形为正六边形且此正六边形过正方体的中心,可知错误;

三棱锥体积:

正方体体积:

三棱锥与正方体的体积之比为:,可知正确.

本题正确选项:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过点( )引直线l与曲线y= 相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于( )
A.
B.-
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,过椭圆M: (a>b>0)右焦点的直线x+y﹣ =0交M于A,B两点,P为AB的中点,且OP的斜率为
(1)求M的方程
(2)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣2x>0}, ,则(
A.A∩B=
B.A∪B=R
C.BA
D.AB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.

(1)证明AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn . 已知S3=a22 , 且S1 , S2 , S4成等比数列,求{an}的通项式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图像向左平移个单位长度,再将图像上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图像.

(1)求的单调递增区间;

(2)若对于任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案