精英家教网 > 高中数学 > 题目详情

【题目】在学习函数时,我们经历了“确定函数的表达式利用函数图象研究其性质——运用函数解决问题“的学习过程,在画函数图象时,我们通过列表、描点、连线的方法画出了所学的函数图象.同时,我们也学习过绝对值的意义

结合上面经历的学习过程,现在来解决下面的问题:

在函数中,当时,;当时,

1)求这个函数的表达式;

2)在给出的平面直角坐标系中,请直接画出此函数的图象并写出这个函数的两条性质;

3)在图中作出函数的图象,结合你所画的函数图象,直接写出不等式的解集.

【答案】1;(2)图象、性质见解析;(3

【解析】

1)将点的坐标代入函数的解析式,求出的值,由此可得出该函数的解析式;

2)由题意根据(1)中的表达式可以画出该函数的图象,结合图象可得出该函数的对称性与单调性;

3)由题意根据图象可以直接写出所求不等式的解集.

1)将点的坐标代入函数的解析式,得,解得,

所以,函数的解析式为

2)图象如下:

函数的图象关于直线对称,该函数的单调递减区间为,单调递增区间为,最小值为

3)图象如下,

观察图象可得不等式的解集为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}满足当n1时,an,且a1.

(1)求证:数列为等差数列;

(2)a1a2是否是数列{an}中的项?如果是,求出是第几项;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若对于任意实数对,存在,使成立,则称集合垂直对点集;下列四个集合中,是垂直对点集的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2500万元,每生产百件,需另投入成本(单位:万元),当年产量不足30百件时,;当年产量不小于30百件时,;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.

1)求年利润(万元)关于年产量(百件)的函数关系式;

2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数有两个不相等的正零点,求的取值范围;

(2)若函数上的最小值为-3,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且a2=2b.

(1)求椭圆的方程;

(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 平面经过,直线则平面截该正方体所得截面的面积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】箱子里有16张扑克牌:红桃、4,黑桃、8、7、4、3、2,草花、6、5、4,方块、5,老师从这16张牌中挑出一张牌来,并把这张牌的点数告诉了学生甲,把这张牌的花色告诉了学生乙,这时,老师问学生甲和学生乙:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,老师听到了如下的对话:学生甲:我不知道这张牌;学生乙:我知道你不知道这张牌;学生甲:现在我知道这张牌了;学生乙:我也知道了.则这张牌是( )

A. 草花5B. 红桃

C. 红桃4D. 方块5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

查看答案和解析>>

同步练习册答案