精英家教网 > 高中数学 > 题目详情
12.已知p=lg7-lg3,则10p=$\frac{7}{3}$.

分析 利用对数的运算性质化简p,代入10p再由对数的运算性质得答案.

解答 解:∵p=lg7-lg3=$lg\frac{7}{3}$,
∴10p=$1{0}^{lg\frac{7}{3}}=\frac{7}{3}$.
故答案为:$\frac{7}{3}$.

点评 本题考查对数的运算性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=a•4x-2x+1-a
(1)若a=0,解方程f(2x)=-$\frac{1}{32}$;
(2)若方程a•4x-2x+1-a=0在[1,2]上有根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.tan1.5,tan2.5,tan3.5的大小关系为tan3.5<tan2.5<tan1.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A,B,记A∩B=C.
(1)若A={x|3≤x<10},B={x|2x-8≥0}.试求∁RC;
(2)若A={-4,2a-1,a2},B={a-5,1-a,9},C={9}.求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知cos(θ-$\frac{2π}{5}$)=$\frac{2}{3}$,则2sin($\frac{19π}{10}$-θ)+cos(θ+$\frac{13π}{5}$))等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=x2-2kx-3k2
(1)若关于x的不等式f(x)<0的解集为∅,求k的取值范围;
(2)解关于x的不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.判断下列函数的奇偶性.
(1)f(x)=sin($\frac{3x}{4}+\frac{3π}{2}$);
(2)f(x)=$\frac{1+sinx-co{s}^{2}x}{1+sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数y=2sin2x+2acosx+2a的最大值是$\frac{1}{2}$.
(1)求a的值;
(2)求y的最小值,并求y最小时x的值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanα=2,则$\frac{si{n}^{2}α+co{s}^{2}(π-α)}{1+co{s}^{2}α}$的值为$\frac{5}{6}$.

查看答案和解析>>

同步练习册答案