精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= sin2x﹣ cos2x.
(1)求f(x)的最小周期和最小值;
(2)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈ 时,求g(x)的值域.

【答案】
(1)解:∵f(x)= sin2x﹣ cos2x= sin2x﹣ (1+cos2x)=sin(2x﹣ )﹣

∴f(x)的最小周期T= =π,最小值为:﹣1﹣ =﹣


(2)解:由条件可知:g(x)=sin(x﹣ )﹣

当x∈[ ,π]时,有x﹣ ∈[ ],从而sin(x﹣ )的值域为[ ,1],那么sin(x﹣ )﹣ 的值域为:[ ],

故g(x)在区间[ ,π]上的值域是[ ]


【解析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣ )﹣ ,从而可求最小周期和最小值;(2)由函数y=Asin(ωx+φ)的图象变换可得g(x)=sin(x﹣ )﹣ ,由x∈[ ,π]时,可得x﹣ 的范围,即可求得g(x)的值域.
【考点精析】通过灵活运用函数y=Asin(ωx+φ)的图象变换,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.

表示台机器在三年使用期内需更换的易损零件数,表示台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.

(1)若,求的函数解析式;

(2)若要求需更换的易损零件数不大于的频率不小于,求的最小值;

(3)假设这台机器在购机的同时每台都购买个易损零件,或每台都购买个易损零件,分别计算这台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买台机器的同时应购买个还是个易损零件?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)< ,则不等式f(x2)< + 的解集为(
A.(﹣
B.(﹣∞,﹣1)∪(1,+∞)??
C.(﹣1,1)
D.(﹣∞,﹣ )∪( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知椭圆的左、右顶点分别为A,B,其离心率,点为椭圆上的一个动点,面积的最大值是

(1)求椭圆的方程;

(2)若过椭圆右顶点的直线与椭圆的另一个交点为,线段的垂直平分线与轴交于点,当时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面ABC

,求直线与平面所成的角的大小;

的条件下,求二面角的大小;

平面G为垂足,令其中pq,求pqr的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的动点,过点的垂线,线段的中垂线交于点的轨迹为.

(1)求轨迹的方程;

(2)过且与坐标轴不垂直的直线交曲线两点,若以线段为直径的圆与直线相切,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足2Sn=3an﹣1,其中n∈N*
(1)求数列{an}的通项公式;
(2)设anbn= ,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱的所有棱长都相等,分别为的中点.现有下列四个结论:

平面:异面直线所成角的余弦值为.

其中正确的结论是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+bx2+cx﹣1当x=﹣2时有极值,且在x=﹣1处的切线的斜率为﹣3.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[﹣1,2]上的最大值与最小值.

查看答案和解析>>

同步练习册答案