精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)若在区间上存在单调递减区间,求的取值范围;

2)当时,在区间上的最大值为15,求在区间上的最小值。

【答案】(1) (2)

【解析】

1)求出导函数,利用fx)在区间上存在单调递减区间,转化为导函数上存在函数值小于零的区间,列出不等式求解a的范围即可.

2)判断导函数的开口方向,对称轴,利用函数fx)的上单调性,求出a,然后求解最小值.

解:(1)函数aR

可得

由条件fx)在区间上存在单调递减区间,知导函数上存在函数值小于零的区间,

只需 ,解得

a的取值范围为

2的图象开口向上,且对称轴x=﹣1

f′(0)=a0f′(3)=9+6+a15+a0

所以必存在一点x003),使得f′(x0)=0

此时函数fx)在[0x0]上单调递减,

[x03]单调递增,又由于f0)=0f3)=9+9+a18+3a0f0

所以f3)=18+3a15,即a=﹣1,此时,

所以函数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选择适当的证明方法证明下列问题

(1)设是公比为的等比数列且,证明数列不是等比数列.

(2)设为虚数单位,为正整数,,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年2月9-25日第23届冬奥会在韩国平昌举行.4年后第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:

收看

没收看

男生

60

20

女生

20

20

(Ⅰ)根据上表说明,能否有的把握认为收看开幕式与性别有关?

(Ⅱ)现从参与问卷调查且收看了开幕式的学生中采用按性别分层抽样的方法选取8人参加2022年北京冬奥会志愿者宣传活动.

(ⅰ)问男女学生各选取多少人?

(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张型型桌子分别需要1小时和2小时,漆工油漆一张型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张型型桌子分别获利润2千元和3千元.

(1)列出满足生产条件的数学关系式,并画出可行域;

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点坐标为

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点,过点的直线(与轴不重合)与椭圆交于两点,直线与直线相交于点,试证明:直线轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:

打算观看

不打算观看

女生

20

b

男生

c

25

1)求出表中数据bc;

2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;

3)为了计算10人中选出9人参加比赛的情况有多少种,我们可以发现它与10人中选出1人不参加比赛的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,

(1)求证:数列是等比数列

(2)求数列的通项公式

(3)设,若对任意,有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数恰有两个不同的零点,则实数的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

【答案】(1);(2)

【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为

,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得

可得曲线C的极坐标方程.

(2)由(1)不妨设M(),,(),

由此可求面积的最大值.

试题解析:(1)由题意可知直线的直角坐标方程为

曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为

所以曲线C的极坐标方程为

.

(2)由(1)不妨设M(),,(),

时,

所以△MON面积的最大值为.

型】解答
束】
23

【题目】已知函数的定义域为

(1)求实数的取值范围;

(2)设实数的最大值,若实数 满足,求的最小值.

查看答案和解析>>

同步练习册答案