精英家教网 > 高中数学 > 题目详情

【题目】为了了解地区足球特色学校的发展状况,某调查机构得到如下统计数据:

年份

2014

2015

2016

2017

2018

足球特色学校(百个)

0.30

0.60

1.00

1.40

1.70

(Ⅰ)根据上表数据,计算的相关系数,并说明的线性相关性强弱(已知:,则认为线性相关性很强;,则认为线性相关性一般;,则认为线性相关性较弱);

(Ⅱ)求关于的线性回归方程,并预测地区2019年足球特色学校的个数(精确到个)

参考公式:.

【答案】(I)相关性很强;(II),208个

【解析】

(Ⅰ)求得,利用求出的值,与临界值比较即可得结论;(Ⅱ)结合(Ⅰ)根据所给的数据,利用公式求出线性回归方程的系数,再根据样本中心点一定在线性回归方程上,求出的值,写出线性回归方程; 代入线性回归方程求出对应的的值,可预测地区2019年足球特色学校的个数.

(Ⅰ)

线性相关性很强.

(Ⅱ)

关于的线性回归方程是.

时,(百个),

地区2019年足球特色学校的个数为208个.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠成交的概率为0.6,以优惠成交的概率为0.4.

(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;

(2)某单位需要这种零件650箱,求购买总价的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其中一个焦点F在直线.

1)求椭圆C的方程;

2)若直线和直线与椭圆分别相交于点,求的值;

3)若直线与椭圆交于PQ两点,试求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今有9所省级示范学校参加联考,参加人数约5000人,考完后经计算得数学平均分为113分.已知本次联考的成绩服从正态分布,且标准差为12.

(1)计算联考成绩在137分以上的人数.

(2)从所有试卷中任意抽取1份,已知分数不超过123分的概率为0.8.

①求分数低于103分的概率.

②从所有试卷中任意抽取5份,由于试卷数量较大,可以把每份试卷被抽到的概率视为相同,表示抽到成绩低于103分的试卷的份数,写出的分布列,并求出数学期望.

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若.

1)求函数的解析式;

2)求函数条件下的最小值;

3)把的图像按向量平移得到曲线,过坐标原点分别交曲线于点,直线轴于点,当为锐角时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好某项运动,利用列联表,由计算可得

PK2>k

010

005

0025

0010

0005

0001

k

2706

3841

5024

6635

7879

10828

参照附表,得到的正确结论是( )

A.有995%以上的把握认为爱好该项运动与性别无关

B.有995%以上的把握认为爱好该项运动与性别有关

C.在犯错误的概率不超过005%的前提下,认为爱好该项运动与性别有关

D.在犯错误的概率不超过005%的前提下,认为爱好该项运动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aln x (aR).

(1)a=1时,求f(x)x[1,+∞)内的最小值;

(2)f(x)存在单调递减区间,求a的取值范围;

(3)求证ln(n+1)> (nN*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD是直角梯形,且ADBCADCD,∠ABC60°BC2AD2PC3PAB是正三角形.

1)求证:ABPC

2)求二面角PCDB的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,B-10),C10),AB=6,点PAB上,且∠BAC=PCA

(1)求点P的轨迹E的方程;

(2)若,过点C的直线与E交于MN两点,与直线x=9交于点K,记QM,QN,QK的斜率分别为k1,k2,k3,试探究k1,k2,k3的关系,并证明.

查看答案和解析>>

同步练习册答案