精英家教网 > 高中数学 > 题目详情

已知函数,的最大值为2.
(1)求函数上的值域;
(2)已知外接圆半径,角所对的边分别是,求的值.

(1);(2).

解析试题分析:(1)根据化一公式可知函数的最大值为,其等于2,可以解出;函数,由的范围,求出的范围,根据的图像确定函数的值域;
(2)代入(1)的结果可得,根据正弦定理,可将角化成边,得到关于的式子,,两边在同时除以,易得结果了.此题属于基础题型.
试题解析:(1)由题意,的最大值为,所以.         2分
,于是.             4分
上递增.在递减,
所以函数上的值域为;             6分
(2)化简
由正弦定理,得,                 9分
因为△ABC的外接圆半径为
所以                         12分
考点:1.三角函数的化简;2.三角函数的性质;2.正弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 的部分图象,如图所示.

(1)求函数解析式;
(2)若方程有两个不同的实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知=,那么sin的值为 ,cos2的值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:P(-2,y)是角θ终边上一点,且sinθ= -,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期;
(2)求函数在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最小正周期.
(2)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的部分图象如图所示。

(1)求的最小正周期及解析式;
(2)设,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(1)设,将函数表示为关于的函数,求的解析式和定义域;
(2)对任意,不等式都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为.
(1)求ω的最小正周期;
(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移个单位长度得到,求y=g(x)的单调增区间.

查看答案和解析>>

同步练习册答案